Interactive3D: Create What You Want by Interactive 3D Generation
- URL: http://arxiv.org/abs/2404.16510v1
- Date: Thu, 25 Apr 2024 11:06:57 GMT
- Title: Interactive3D: Create What You Want by Interactive 3D Generation
- Authors: Shaocong Dong, Lihe Ding, Zhanpeng Huang, Zibin Wang, Tianfan Xue, Dan Xu,
- Abstract summary: We introduce Interactive3D, an innovative framework for interactive 3D generation that grants users precise control over the generative process.
Our experiments demonstrate that Interactive3D markedly improves the controllability and quality of 3D generation.
- Score: 13.003964182554572
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D object generation has undergone significant advancements, yielding high-quality results. However, fall short of achieving precise user control, often yielding results that do not align with user expectations, thus limiting their applicability. User-envisioning 3D object generation faces significant challenges in realizing its concepts using current generative models due to limited interaction capabilities. Existing methods mainly offer two approaches: (i) interpreting textual instructions with constrained controllability, or (ii) reconstructing 3D objects from 2D images. Both of them limit customization to the confines of the 2D reference and potentially introduce undesirable artifacts during the 3D lifting process, restricting the scope for direct and versatile 3D modifications. In this work, we introduce Interactive3D, an innovative framework for interactive 3D generation that grants users precise control over the generative process through extensive 3D interaction capabilities. Interactive3D is constructed in two cascading stages, utilizing distinct 3D representations. The first stage employs Gaussian Splatting for direct user interaction, allowing modifications and guidance of the generative direction at any intermediate step through (i) Adding and Removing components, (ii) Deformable and Rigid Dragging, (iii) Geometric Transformations, and (iv) Semantic Editing. Subsequently, the Gaussian splats are transformed into InstantNGP. We introduce a novel (v) Interactive Hash Refinement module to further add details and extract the geometry in the second stage. Our experiments demonstrate that Interactive3D markedly improves the controllability and quality of 3D generation. Our project webpage is available at \url{https://interactive-3d.github.io/}.
Related papers
- Zero-Shot Dual-Path Integration Framework for Open-Vocabulary 3D Instance Segmentation [19.2297264550686]
Open-vocabulary 3D instance segmentation transcends traditional closed-vocabulary methods.
We introduce Zero-Shot Dual-Path Integration Framework that equally values the contributions of both 3D and 2D modalities.
Our framework, utilizing pre-trained models in a zero-shot manner, is model-agnostic and demonstrates superior performance on both seen and unseen data.
arXiv Detail & Related papers (2024-08-16T07:52:00Z) - iControl3D: An Interactive System for Controllable 3D Scene Generation [57.048647153684485]
iControl3D is a novel interactive system that empowers users to generate and render customizable 3D scenes with precise control.
We leverage 3D meshes as an intermediary proxy to iteratively merge individual 2D diffusion-generated images into a cohesive and unified 3D scene representation.
Our neural rendering interface enables users to build a radiance field of their scene online and navigate the entire scene.
arXiv Detail & Related papers (2024-08-03T06:35:09Z) - Chat-Edit-3D: Interactive 3D Scene Editing via Text Prompts [76.73043724587679]
We propose a dialogue-based 3D scene editing approach, termed CE3D.
Hash-Atlas represents 3D scene views, which transfers the editing of 3D scenes onto 2D atlas images.
Results demonstrate that CE3D effectively integrates multiple visual models to achieve diverse editing visual effects.
arXiv Detail & Related papers (2024-07-09T13:24:42Z) - DiffTF++: 3D-aware Diffusion Transformer for Large-Vocabulary 3D Generation [53.20147419879056]
We introduce a diffusion-based feed-forward framework to address challenges with a single model.
Building upon our 3D-aware Diffusion model with TransFormer, we propose a stronger version for 3D generation, i.e., DiffTF++.
Experiments on ShapeNet and OmniObject3D convincingly demonstrate the effectiveness of our proposed modules.
arXiv Detail & Related papers (2024-05-13T17:59:51Z) - Coin3D: Controllable and Interactive 3D Assets Generation with Proxy-Guided Conditioning [52.81032340916171]
Coin3D allows users to control the 3D generation using a coarse geometry proxy assembled from basic shapes.
Our method achieves superior controllability and flexibility in the 3D assets generation task.
arXiv Detail & Related papers (2024-05-13T17:56:13Z) - DragGaussian: Enabling Drag-style Manipulation on 3D Gaussian Representation [57.406031264184584]
DragGaussian is a 3D object drag-editing framework based on 3D Gaussian Splatting.
Our contributions include the introduction of a new task, the development of DragGaussian for interactive point-based 3D editing, and comprehensive validation of its effectiveness through qualitative and quantitative experiments.
arXiv Detail & Related papers (2024-05-09T14:34:05Z) - Sculpt3D: Multi-View Consistent Text-to-3D Generation with Sparse 3D Prior [57.986512832738704]
We present a new framework Sculpt3D that equips the current pipeline with explicit injection of 3D priors from retrieved reference objects without re-training the 2D diffusion model.
Specifically, we demonstrate that high-quality and diverse 3D geometry can be guaranteed by keypoints supervision through a sparse ray sampling approach.
These two decoupled designs effectively harness 3D information from reference objects to generate 3D objects while preserving the generation quality of the 2D diffusion model.
arXiv Detail & Related papers (2024-03-14T07:39:59Z) - Retrieval-Augmented Score Distillation for Text-to-3D Generation [30.57225047257049]
We introduce novel framework for retrieval-based quality enhancement in text-to-3D generation.
We conduct extensive experiments to demonstrate that ReDream exhibits superior quality with increased geometric consistency.
arXiv Detail & Related papers (2024-02-05T12:50:30Z) - Next3D: Generative Neural Texture Rasterization for 3D-Aware Head
Avatars [36.4402388864691]
3D-aware generative adversarial networks (GANs) synthesize high-fidelity and multi-view-consistent facial images using only collections of single-view 2D imagery.
Recent efforts incorporate 3D Morphable Face Model (3DMM) to describe deformation in generative radiance fields either explicitly or implicitly.
We propose a novel 3D GAN framework for unsupervised learning of generative, high-quality and 3D-consistent facial avatars from unstructured 2D images.
arXiv Detail & Related papers (2022-11-21T06:40:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.