論文の概要: Energy-Latency Manipulation of Multi-modal Large Language Models via Verbose Samples
- arxiv url: http://arxiv.org/abs/2404.16557v1
- Date: Thu, 25 Apr 2024 12:11:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 13:49:56.887805
- Title: Energy-Latency Manipulation of Multi-modal Large Language Models via Verbose Samples
- Title(参考訳): バーボースサンプルを用いた多モード大言語モデルのエネルギーレイテンシ制御
- Authors: Kuofeng Gao, Jindong Gu, Yang Bai, Shu-Tao Xia, Philip Torr, Wei Liu, Zhifeng Li,
- Abstract要約: 本稿では,知覚不能な摂動を発生させることにより,推論中に高エネルギー遅延コストを誘導することを目的とする。
生成シーケンスの長さを最大化することにより、高エネルギーレイテンシコストを操作できることが判明した。
実験により,我々の冗長サンプルは生成シーケンスの長さを大きく拡張できることが示された。
- 参考スコア(独自算出の注目度): 63.9198662100875
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the exceptional performance of multi-modal large language models (MLLMs), their deployment requires substantial computational resources. Once malicious users induce high energy consumption and latency time (energy-latency cost), it will exhaust computational resources and harm availability of service. In this paper, we investigate this vulnerability for MLLMs, particularly image-based and video-based ones, and aim to induce high energy-latency cost during inference by crafting an imperceptible perturbation. We find that high energy-latency cost can be manipulated by maximizing the length of generated sequences, which motivates us to propose verbose samples, including verbose images and videos. Concretely, two modality non-specific losses are proposed, including a loss to delay end-of-sequence (EOS) token and an uncertainty loss to increase the uncertainty over each generated token. In addition, improving diversity is important to encourage longer responses by increasing the complexity, which inspires the following modality specific loss. For verbose images, a token diversity loss is proposed to promote diverse hidden states. For verbose videos, a frame feature diversity loss is proposed to increase the feature diversity among frames. To balance these losses, we propose a temporal weight adjustment algorithm. Experiments demonstrate that our verbose samples can largely extend the length of generated sequences.
- Abstract(参考訳): MLLM(Multi-modal large language model)の例外的な性能にもかかわらず、その展開には相当な計算資源が必要である。
悪意のあるユーザが高エネルギー消費と遅延時間(遅延コスト)を誘導すると、計算リソースが枯渇し、サービスの可用性が損なわれる。
本稿では,MLLMの脆弱性,特に画像ベースおよびビデオベースの脆弱性について検討し,知覚不能な摂動を発生させることにより,推論中の高エネルギー遅延コストを誘導することを目的とする。
生成シーケンスの長さを最大化することで高エネルギーレイテンシのコストを操作できることが分かり、冗長な画像やビデオを含む冗長なサンプルを提案する動機となった。
具体的には、EOSトークンの遅延損失と、生成したトークンに対する不確実性を高める不確実性損失の2つの非特異的損失を提案する。
さらに、多様性の向上は、複雑さを増大させることによってより長い応答を促進することが重要であり、これは以下のモダリティ特異的損失を引き起こす。
冗長な画像では、多様な隠蔽状態を促進するためにトークンの多様性損失が提案されている。
冗長なビデオでは、フレーム間の特徴の多様性を高めるために、フレームの特徴の多様性の損失が提案されている。
これらの損失のバランスをとるために,時間的重み調整アルゴリズムを提案する。
実験により,我々の冗長サンプルは生成シーケンスの長さを大きく拡張できることが示された。
関連論文リスト
- MQuant: Unleashing the Inference Potential of Multimodal Large Language Models via Full Static Quantization [15.01214559812713]
MQuantは、マルチモーダル大規模言語モデル(MLLM)の課題に取り組むために設計されたポストトレーニング量子化フレームワークである。
5つのメインストリームMLLM(Qwen-VL, Mini-V, CogVLM2)では、W4A8のMQuantがほぼ浮動小数点精度(1%劣化)を実現し、推論遅延を最大30%削減する。
論文 参考訳(メタデータ) (2025-02-01T13:08:02Z) - Learning Free Token Reduction for Multi-Modal LLM [3.4026156483879517]
VLM(Vision-Language Models)は、様々なマルチモーダルタスクにおいて顕著な成功を収めている。
しかし、それらの実践的な展開は、しばしば高い計算コストと長期の推論時間によって制約される。
本稿では,空間次元と時間次元の両方で動作するトークン圧縮パラダイムを提案する。
論文 参考訳(メタデータ) (2025-01-29T02:52:32Z) - FOLDER: Accelerating Multi-modal Large Language Models with Enhanced Performance [7.889590793589825]
視覚トークン列の長さを削減するために設計された,シンプルで効果的なプラグアンドプレイモジュールであるFOLDERを紹介する。
我々は、異なる還元戦略によってもたらされた情報損失を分析し、視覚的冗長性を取り除きながら鍵情報を保存するFOLDERを開発した。
FOLDERは、オリジナルのモデルと同等またはそれ以上のパフォーマンスを達成すると同時に、最大70%のビジュアルトークンを削除することで、複雑さを劇的に低減する。
論文 参考訳(メタデータ) (2025-01-05T03:28:45Z) - Multimodal Latent Language Modeling with Next-Token Diffusion [111.93906046452125]
マルチモーダル生成モデルは、離散データ(テキストやコードなど)と連続データ(画像、オーディオ、ビデオなど)の両方を扱う統一的なアプローチを必要とする。
因果変換器を用いて連続データと離散データをシームレスに統合する潜在言語モデリング(LatentLM)を提案する。
論文 参考訳(メタデータ) (2024-12-11T18:57:32Z) - Efficient Multi-modal Large Language Models via Visual Token Grouping [55.482198808206284]
高解像度の画像やビデオは、彼らの広く普及するための障壁となる。
MLLMにおける視覚トークンの圧縮は、推論コストを削減するための有望なアプローチとして現れている。
本稿では,事前学習した視覚エンコーダの能力を利用して類似画像セグメントをグループ化する,新たなグループ化機構であるVisToGを紹介する。
論文 参考訳(メタデータ) (2024-11-26T09:36:02Z) - Q-VLM: Post-training Quantization for Large Vision-Language Models [73.19871905102545]
本稿では,大規模視覚言語モデル(LVLM)の学習後量子化フレームワークを提案する。
視覚言語モデル全体の離散化誤差に大きな影響を及ぼす層間依存関係を抽出し、この依存関係を最適な量子化戦略に組み込む。
実験の結果,提案手法はメモリを2.78倍圧縮し,出力速度を約13B LLaVAモデルで1.44倍向上させることができた。
論文 参考訳(メタデータ) (2024-10-10T17:02:48Z) - Video Token Sparsification for Efficient Multimodal LLMs in Autonomous Driving [9.900979396513687]
MLLM(Multimodal large language model)は、自律運転システムにおけるシーン理解の促進に顕著な可能性を示している。
1つの大きな制限は、細粒度で長文の視覚情報を取得するのに必要な多数の視覚トークンから生じる。
本稿では,視覚トークンの総数を大幅に削減し,最も有能な情報を保存するためのビデオトークンスペーシフィケーション(VTS)を提案する。
論文 参考訳(メタデータ) (2024-09-16T05:31:01Z) - Inducing High Energy-Latency of Large Vision-Language Models with Verbose Images [63.91986621008751]
大規模視覚言語モデル(VLM)は、様々なマルチモーダルタスクにおいて例外的な性能を達成している。
本稿では,VLMの推論中に高エネルギー遅延コストを誘導することを目的とする。
本稿では,長い文を生成するためにVLMを誘導するために,知覚不能な摂動を作り出すことを目的とした冗長な画像を提案する。
論文 参考訳(メタデータ) (2024-01-20T08:46:06Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
マルチモーダルな操作検出とグラウンド処理のためのトランスフォーマーベースのフレームワークを構築する。
本フレームワークは,マルチモーダルアライメントの能力を維持しながら,モダリティ特有の特徴を同時に探求する。
本稿では,グローバルな文脈的キューを各モーダル内に適応的に集約する暗黙的操作クエリ(IMQ)を提案する。
論文 参考訳(メタデータ) (2023-09-22T06:55:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。