論文の概要: Q-VLM: Post-training Quantization for Large Vision-Language Models
- arxiv url: http://arxiv.org/abs/2410.08119v2
- Date: Fri, 15 Nov 2024 13:57:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-18 15:36:00.602464
- Title: Q-VLM: Post-training Quantization for Large Vision-Language Models
- Title(参考訳): Q-VLM:大規模ビジョンランゲージモデルのための後学習量子化
- Authors: Changyuan Wang, Ziwei Wang, Xiuwei Xu, Yansong Tang, Jie Zhou, Jiwen Lu,
- Abstract要約: 本稿では,大規模視覚言語モデル(LVLM)の学習後量子化フレームワークを提案する。
視覚言語モデル全体の離散化誤差に大きな影響を及ぼす層間依存関係を抽出し、この依存関係を最適な量子化戦略に組み込む。
実験の結果,提案手法はメモリを2.78倍圧縮し,出力速度を約13B LLaVAモデルで1.44倍向上させることができた。
- 参考スコア(独自算出の注目度): 73.19871905102545
- License:
- Abstract: In this paper, we propose a post-training quantization framework of large vision-language models (LVLMs) for efficient multi-modal inference. Conventional quantization methods sequentially search the layer-wise rounding functions by minimizing activation discretization errors, which fails to acquire optimal quantization strategy without considering cross-layer dependency. On the contrary, we mine the cross-layer dependency that significantly influences discretization errors of the entire vision-language model, and embed this dependency into optimal quantization strategy searching with low search cost. Specifically, we observe the strong correlation between the activation entropy and the cross-layer dependency concerning output discretization errors. Therefore, we employ the entropy as the proxy to partition blocks optimally, which aims to achieve satisfying trade-offs between discretization errors and the search cost. Moreover, we optimize the visual encoder to disentangle the cross-layer dependency for fine-grained decomposition of search space, so that the search cost is further reduced without harming the quantization accuracy. Experimental results demonstrate that our method compresses the memory by 2.78x and increase generate speed by 1.44x about 13B LLaVA model without performance degradation on diverse multi-modal reasoning tasks. Code is available at https://github.com/ChangyuanWang17/QVLM.
- Abstract(参考訳): 本稿では,大規模視覚言語モデル(LVLM)の学習後量子化フレームワークを提案する。
従来の量子化法では, 層間依存性を考慮せずに最適な量子化戦略の獲得に失敗するアクティベーション離散化誤差を最小化することで, 層間丸化関数を逐次探索する手法が提案されている。
逆に、視覚言語モデル全体の離散化誤差に大きな影響を及ぼす層間依存関係を抽出し、この依存関係を探索コストの低い最適量子化戦略に組み込む。
具体的には、活性化エントロピーと出力の離散化誤差に関する層間依存性の強い相関を観察する。
そこで我々は,このエントロピーをブロック分割のプロキシとして最適に適用し,離散化誤差と探索コストのトレードオフを満たすことを目的としている。
さらに,探索空間の細粒度分解のために,視覚エンコーダを最適化し,量子化精度を損なうことなく探索コストをさらに削減する。
実験の結果,提案手法はメモリを2.78倍圧縮し,出力速度を約13B LLaVAモデルで1.44倍向上させる。
コードはhttps://github.com/ChangyuanWang17/QVLMで入手できる。
関連論文リスト
- Pushing the Limits of Large Language Model Quantization via the Linearity Theorem [71.3332971315821]
本稿では,階層的$ell$再構成誤差と量子化によるモデルパープレキシティ増加との直接的な関係を確立する「線形定理」を提案する。
この知見は,(1)アダマール回転とHIGGSと呼ばれるMSE最適格子を用いた単純なデータフリーLCM量子化法,(2)非一様層ごとの量子化レベルを求める問題に対する最適解の2つの新しい応用を可能にする。
論文 参考訳(メタデータ) (2024-11-26T15:35:44Z) - Overcoming the Curse of Dimensionality in Reinforcement Learning Through Approximate Factorization [15.898378661128334]
強化学習(RL)アルゴリズムは次元性の呪いに苦しむことが知られている。
本稿では,元のマルコフ決定過程(MDP)を,より小さく,独立に進化するMDPに大まかに分解することで,次元性の呪いを克服することを提案する。
提案手法は,両アルゴリズムに改良された複雑性保証を提供する。
論文 参考訳(メタデータ) (2024-11-12T07:08:00Z) - Efficient Learnable Collaborative Attention for Single Image Super-Resolution [18.955369476815136]
非局所注意(NLA)は、深部画像超解像(SR)における長距離特徴相関を捉える強力な手法である
本稿では,非局所的モデリングに帰納バイアスを導入する新しい学習可能協調意識(LCoA)を提案する。
我々のLCoAは、推論段階での非局所モデリング時間を約83%削減できる。
論文 参考訳(メタデータ) (2024-04-07T11:25:04Z) - MGAS: Multi-Granularity Architecture Search for Trade-Off Between Model
Effectiveness and Efficiency [10.641875933652647]
我々は,多粒度アーキテクチャサーチ(MGAS)を導入し,効率的かつ効率的なニューラルネットワークを探索する。
各粒度レベル固有の離散化関数を学習し、進化したアーキテクチャに従って単位残率を適応的に決定する。
CIFAR-10、CIFAR-100、ImageNetの大規模な実験により、MGASはモデル性能とモデルサイズとのトレードオフを改善するために、他の最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-10-23T16:32:18Z) - Zero-Shot Sharpness-Aware Quantization for Pre-trained Language Models [88.80146574509195]
量子化は、メモリオーバーヘッドを減らし、推論を加速するための有望なアプローチである。
種々のPLMのゼロショット量子化のための新しい量子化(ZSAQ)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-20T07:09:56Z) - Amortizing intractable inference in large language models [56.92471123778389]
難治性後部分布のサンプルとして, 償却ベイズ推定を用いる。
我々は,LLMファインチューニングの分散マッチングパラダイムが,最大習熟の代替となることを実証的に実証した。
重要な応用として、チェーン・オブ・ソート推論を潜在変数モデリング問題として解釈する。
論文 参考訳(メタデータ) (2023-10-06T16:36:08Z) - Neural Networks with Quantization Constraints [111.42313650830248]
量子化学習における制約付き学習手法を提案する。
結果の問題は強い双対であり、勾配推定は不要であることを示す。
提案手法は画像分類タスクにおける競合性能を示す。
論文 参考訳(メタデータ) (2022-10-27T17:12:48Z) - Effective and Fast: A Novel Sequential Single Path Search for
Mixed-Precision Quantization [45.22093693422085]
混合精度量子化モデルは、異なる層の感度に応じて異なる量子化ビット精度にマッチし、優れた性能を達成できます。
いくつかの制約に従ってディープニューラルネットワークにおける各層の量子化ビット精度を迅速に決定することは難しい問題である。
混合精度量子化のための新規なシーケンシャルシングルパス探索(SSPS)法を提案する。
論文 参考訳(メタデータ) (2021-03-04T09:15:08Z) - Fully Quantized Image Super-Resolution Networks [81.75002888152159]
効率と精度を両立させるためのフル量子化画像超解像フレームワーク(FQSR)を提案する。
我々は、SRResNet、SRGAN、EDSRを含む複数の主流超解像アーキテクチャに量子化スキームを適用した。
低ビット量子化を用いたFQSRは、5つのベンチマークデータセットの完全精度と比較すると、パー性能で実現できる。
論文 参考訳(メタデータ) (2020-11-29T03:53:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。