Application of RESNET50 Convolution Neural Network for the Extraction of Optical Parameters in Scattering Media
- URL: http://arxiv.org/abs/2404.16647v1
- Date: Thu, 25 Apr 2024 14:36:00 GMT
- Title: Application of RESNET50 Convolution Neural Network for the Extraction of Optical Parameters in Scattering Media
- Authors: Bowen Deng, Yihan Zhang, Andrew Parkes, Alex Bentley, Amanda Wright, Michael Pound, Michael Somekh,
- Abstract summary: We train a general purpose convolutional neural network RESNET 50 with simulated data based on Monte Carlo simulations.
We show that compared with previous work our approach gives comparable or better reconstruction accuracy with training on a much smaller dataset.
- Score: 4.934656140862609
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimation of the optical properties of scattering media such as tissue is important in diagnostics as well as in the development of techniques to image deeper. As light penetrates the sample scattering events occur that alter the propagation direction of the photons in a random manner leading degradation of image quality. The distribution of the scattered light does, however, give a measure of the optical properties such as the reduced scattering coefficient and the absorption coefficient. Unfortunately, inverting scattering patterns to recover the optical properties is not simple, especially in the regime where the light is partially randomized. Machine learning has been proposed by several authors as a means of recovering these properties from either the back scattered or the transmitted light. In the present paper, we train a general purpose convolutional neural network RESNET 50 with simulated data based on Monte Carlo simulations. We show that compared with previous work our approach gives comparable or better reconstruction accuracy with training on a much smaller dataset. Moreover, by training on multiple parameters such as the intensity distribution at multiple planes or the exit angle and spatial distribution one achieves improved performance compared to training on a single input such as the intensity distribution captured at the sample surface. While our approach gives good parameter reconstruction, we identify factors that limit the accuracy of the recovered properties, particularly the absorption coefficient. In the light of these limitations, we suggest how the present approach may be enhanced for even better performance.
Related papers
- Generalizable Non-Line-of-Sight Imaging with Learnable Physical Priors [52.195637608631955]
Non-line-of-sight (NLOS) imaging has attracted increasing attention due to its potential applications.
Existing NLOS reconstruction approaches are constrained by the reliance on empirical physical priors.
We introduce a novel learning-based solution, comprising two key designs: Learnable Path Compensation (LPC) and Adaptive Phasor Field (APF)
arXiv Detail & Related papers (2024-09-21T04:39:45Z) - ReNoise: Real Image Inversion Through Iterative Noising [62.96073631599749]
We introduce an inversion method with a high quality-to-operation ratio, enhancing reconstruction accuracy without increasing the number of operations.
We evaluate the performance of our ReNoise technique using various sampling algorithms and models, including recent accelerated diffusion models.
arXiv Detail & Related papers (2024-03-21T17:52:08Z) - ExposureDiffusion: Learning to Expose for Low-light Image Enhancement [87.08496758469835]
This work addresses the issue by seamlessly integrating a diffusion model with a physics-based exposure model.
Our method obtains significantly improved performance and reduced inference time compared with vanilla diffusion models.
The proposed framework can work with both real-paired datasets, SOTA noise models, and different backbone networks.
arXiv Detail & Related papers (2023-07-15T04:48:35Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration.
We propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL.
arXiv Detail & Related papers (2023-06-01T03:08:28Z) - Towards Accurate Post-training Quantization for Diffusion Models [73.19871905102545]
We propose an accurate data-free post-training quantization framework of diffusion models (ADP-DM) for efficient image generation.
Our method outperforms the state-of-the-art post-training quantization of diffusion model by a sizable margin with similar computational cost.
arXiv Detail & Related papers (2023-05-30T04:00:35Z) - Fluctuation-based deconvolution in fluorescence microscopy using
plug-and-play denoisers [2.236663830879273]
spatial resolution of images of living samples obtained by fluorescence microscopes is physically limited due to the diffraction of visible light.
Several deconvolution and super-resolution techniques have been proposed to overcome this limitation.
arXiv Detail & Related papers (2023-03-20T15:43:52Z) - Pixelated Reconstruction of Foreground Density and Background Surface
Brightness in Gravitational Lensing Systems using Recurrent Inference
Machines [116.33694183176617]
We use a neural network based on the Recurrent Inference Machine to reconstruct an undistorted image of the background source and the lens mass density distribution as pixelated maps.
When compared to more traditional parametric models, the proposed method is significantly more expressive and can reconstruct complex mass distributions.
arXiv Detail & Related papers (2023-01-10T19:00:12Z) - Conditional Variational Autoencoder for Learned Image Reconstruction [5.487951901731039]
We develop a novel framework that approximates the posterior distribution of the unknown image at each query observation.
It handles implicit noise models and priors, it incorporates the data formation process (i.e., the forward operator), and the learned reconstructive properties are transferable between different datasets.
arXiv Detail & Related papers (2021-10-22T10:02:48Z) - Improvement of image classification by multiple optical scattering [8.210817257130788]
We build up an optical random scattering system based on an LCD and an RGB laser source.
We found that the image classification can be improved by the help of random scattering.
Along with the ridge classification deployed on computer, we achieved excellent classification accuracy higher than 94%.
arXiv Detail & Related papers (2021-07-12T04:12:41Z) - Deep Network for Scatterer Distribution Estimation for Ultrasound Image
Simulation [8.13909718726358]
We demonstrate a convolutional neural network approach for probabilistic scatterer estimation from observed ultrasound data.
In comparison with several existing approaches, we demonstrate in numerical simulations and with in-vivo images that the synthesized images from scatterer representations estimated with our approach closely match the observations.
arXiv Detail & Related papers (2020-06-17T21:25:13Z) - Adaptive optics with reflected light and deep neural networks [0.0]
We develop a method for adaptive optics with reflected light and deep neural networks compatible with an epi-detection configuration.
Large datasets of sample aberrations which consist of excitation and detection path aberrations as well as the corresponding reflected focus images are generated.
Deep neural networks can disentangle and independently correct excitation and detection aberrations based on reflected light images recorded from scattering samples.
arXiv Detail & Related papers (2020-04-09T15:39:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.