論文の概要: Cooperate or Collapse: Emergence of Sustainability Behaviors in a Society of LLM Agents
- arxiv url: http://arxiv.org/abs/2404.16698v1
- Date: Thu, 25 Apr 2024 15:59:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 13:10:51.024411
- Title: Cooperate or Collapse: Emergence of Sustainability Behaviors in a Society of LLM Agents
- Title(参考訳): 協力・崩壊: LLM エージェント学会における持続可能性行動の創出
- Authors: Giorgio Piatti, Zhijing Jin, Max Kleiman-Weiner, Bernhard Schölkopf, Mrinmaya Sachan, Rada Mihalcea,
- Abstract要約: 本稿では,大規模言語モデル(LLM)における戦略的相互作用と協調的意思決定を研究するためのシミュレーションプラットフォームであるGovSimについて紹介する。
我々は,AIエージェント間の資源共有のダイナミクスを探求し,倫理的考察,戦略的計画,交渉スキルの重要性を強調した。
GovSimでは、15の試験されたLLMのうち、持続可能な結果を達成することができたのはわずか2つであり、モデルが共有リソースを管理する能力に重大なギャップがあることを示唆している。
- 参考スコア(独自算出の注目度): 101.17919953243107
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In the rapidly evolving field of artificial intelligence, ensuring safe decision-making of Large Language Models (LLMs) is a significant challenge. This paper introduces Governance of the Commons Simulation (GovSim), a simulation platform designed to study strategic interactions and cooperative decision-making in LLMs. Through this simulation environment, we explore the dynamics of resource sharing among AI agents, highlighting the importance of ethical considerations, strategic planning, and negotiation skills. GovSim is versatile and supports any text-based agent, including LLMs agents. Using the Generative Agent framework, we create a standard agent that facilitates the integration of different LLMs. Our findings reveal that within GovSim, only two out of 15 tested LLMs managed to achieve a sustainable outcome, indicating a significant gap in the ability of models to manage shared resources. Furthermore, we find that by removing the ability of agents to communicate, they overuse the shared resource, highlighting the importance of communication for cooperation. Interestingly, most LLMs lack the ability to make universalized hypotheses, which highlights a significant weakness in their reasoning skills. We open source the full suite of our research results, including the simulation environment, agent prompts, and a comprehensive web interface.
- Abstract(参考訳): 人工知能の急速に発展する分野では、Large Language Models(LLM)の安全な意思決定が重要な課題である。
本稿では,LLMにおける戦略的相互作用と協調的意思決定を研究するためのシミュレーションプラットフォームであるGovSimについて紹介する。
このシミュレーション環境を通じて,AIエージェント間の資源共有のダイナミクスを探求し,倫理的考察,戦略的計画,交渉スキルの重要性を強調した。
GovSimは汎用的で、LLMエージェントを含むテキストベースのエージェントをサポートする。
Generative Agentフレームワークを使用して、異なるLLMの統合を容易にする標準エージェントを作成します。
GovSimでは15のLSMのうち2つしか持続的な結果が得られず、モデルが共有リソースを管理する能力に重大なギャップがあることが判明した。
さらに,エージェントのコミュニケーション能力を取り除き,共有リソースを過剰に利用し,協調のためのコミュニケーションの重要性を強調した。
興味深いことに、ほとんどのLLMは普遍的な仮説を立てる能力に欠けており、彼らの推論スキルの重大な弱点を浮き彫りにしている。
シミュレーション環境やエージェントプロンプト,包括的なWebインターフェースなど,研究成果の全スイートをオープンソースとして公開しています。
関連論文リスト
- AgentSense: Benchmarking Social Intelligence of Language Agents through Interactive Scenarios [38.878966229688054]
本稿では,対話型シナリオを通して言語エージェントのソーシャルインテリジェンスをベンチマークするAgensSenseを紹介する。
ドラマティック理論に基づいて、エージェントセンスは、広範なスクリプトから構築された1,225の多様な社会的シナリオを作成するためにボトムアップアプローチを採用している。
我々はERG理論を用いて目標を分析し、包括的な実験を行う。
以上の結果から,LPMは複雑な社会シナリオ,特に高レベルの成長ニーズにおいて,目標達成に苦慮していることが明らかとなった。
論文 参考訳(メタデータ) (2024-10-25T07:04:16Z) - On the limits of agency in agent-based models [13.130587222524305]
エージェントベースモデリングは複雑なシステムに対する強力な洞察を提供するが、その実用性は計算の制約によって制限されている。
大規模言語モデル(LLM)の最近の進歩は、適応エージェントによるABMを強化する可能性があるが、大規模なシミュレーションへの統合は依然として困難である。
大規模シミュレーションにおいて,行動複雑性と計算効率のバランスをとる手法であるLSMアーチタイプを提案する。
論文 参考訳(メタデータ) (2024-09-14T04:17:24Z) - Artificial Leviathan: Exploring Social Evolution of LLM Agents Through the Lens of Hobbesian Social Contract Theory [8.80864059602965]
大規模言語モデル(LLM)と人工知能(AI)の進歩は、大規模に計算社会科学研究の機会を提供する。
我々の研究は、複雑な社会的関係が動的に形成され、時間とともに進化するシミュレーションエージェント・ソサイエティを導入している。
我々は、この理論が仮定しているように、エージェントが秩序と安全保障と引き換えに絶対的な主権を放棄することで、残酷な「自然の状態」から逃れようとするかどうかを分析する。
論文 参考訳(メタデータ) (2024-06-20T14:42:58Z) - Large Language Model-based Human-Agent Collaboration for Complex Task
Solving [94.3914058341565]
複雑なタスク解決のためのLarge Language Models(LLM)に基づくヒューマンエージェントコラボレーションの問題を紹介する。
Reinforcement Learning-based Human-Agent Collaboration method, ReHACを提案する。
このアプローチには、タスク解決プロセスにおける人間の介入の最も急進的な段階を決定するために設計されたポリシーモデルが含まれている。
論文 参考訳(メタデータ) (2024-02-20T11:03:36Z) - MetaAgents: Simulating Interactions of Human Behaviors for LLM-based
Task-oriented Coordination via Collaborative Generative Agents [27.911816995891726]
我々は,一貫した行動パターンと課題解決能力を備えたLLMベースのエージェントを,協調的生成エージェントとして導入する。
本研究では,人間のような推論能力と専門的スキルを備えた協調生成エージェントを実現する新しい枠組みを提案する。
我々の研究は、タスク指向の社会シミュレーションにおける大規模言語モデルの役割と進化に関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2023-10-10T10:17:58Z) - Exploring Collaboration Mechanisms for LLM Agents: A Social Psychology View [60.80731090755224]
本稿では,理論的洞察を用いた実用実験により,現代NLPシステム間の協調機構を解明する。
我々は, LLMエージェントからなる4つの独特な社会をつくり, それぞれのエージェントは, 特定の特性(容易性, 過信性)によって特徴づけられ, 異なる思考パターン(議論, ふりかえり)と協調する。
以上の結果から, LLMエージェントは, 社会心理学理論を反映した, 適合性やコンセンサスリーディングといった人間的な社会的行動を示すことが明らかとなった。
論文 参考訳(メタデータ) (2023-10-03T15:05:52Z) - The Rise and Potential of Large Language Model Based Agents: A Survey [91.71061158000953]
大規模言語モデル(LLM)は、人工知能(AGI)の潜在的な火花と見なされる
まず、エージェントの概念を哲学的起源からAI開発まで追跡し、LLMがエージェントに適した基盤である理由を説明します。
単一エージェントシナリオ,マルチエージェントシナリオ,ヒューマンエージェント協調の3つの側面において,LLMベースのエージェントの広範な応用について検討する。
論文 参考訳(メタデータ) (2023-09-14T17:12:03Z) - Building Cooperative Embodied Agents Modularly with Large Language
Models [104.57849816689559]
本研究では, 分散制御, 生の知覚観察, コストのかかるコミュニケーション, 様々な実施環境下でインスタンス化された多目的タスクといった課題に対処する。
我々は,LLMの常識知識,推論能力,言語理解,テキスト生成能力を活用し,認知に触発されたモジュラーフレームワークにシームレスに組み込む。
C-WAH と TDW-MAT を用いた実験により, GPT-4 で駆動される CoELA が, 強い計画に基づく手法を超越し, 創発的な効果的なコミュニケーションを示すことを示した。
論文 参考訳(メタデータ) (2023-07-05T17:59:27Z) - ERMAS: Becoming Robust to Reward Function Sim-to-Real Gaps in
Multi-Agent Simulations [110.72725220033983]
Epsilon-Robust Multi-Agent Simulation (ERMAS)は、このようなマルチエージェントのsim-to-realギャップに対して堅牢なAIポリシーを学ぶためのフレームワークである。
ERMASは、エージェントリスク回避の変化に対して堅牢な税政策を学び、複雑な時間シミュレーションで最大15%社会福祉を改善する。
特に、ERMASは、エージェントリスク回避の変化に対して堅牢な税制政策を学び、複雑な時間シミュレーションにおいて、社会福祉を最大15%改善する。
論文 参考訳(メタデータ) (2021-06-10T04:32:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。