論文の概要: On the limits of agency in agent-based models
- arxiv url: http://arxiv.org/abs/2409.10568v3
- Date: Sun, 10 Nov 2024 21:31:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:03:53.757025
- Title: On the limits of agency in agent-based models
- Title(参考訳): エージェントベースモデルにおけるエージェンシーの限界について
- Authors: Ayush Chopra, Shashank Kumar, Nurullah Giray-Kuru, Ramesh Raskar, Arnau Quera-Bofarull,
- Abstract要約: エージェントベースモデリングは複雑なシステムに対する強力な洞察を提供するが、その実用性は計算の制約によって制限されている。
大規模言語モデル(LLM)の最近の進歩は、適応エージェントによるABMを強化する可能性があるが、大規模なシミュレーションへの統合は依然として困難である。
大規模シミュレーションにおいて,行動複雑性と計算効率のバランスをとる手法であるLSMアーチタイプを提案する。
- 参考スコア(独自算出の注目度): 13.130587222524305
- License:
- Abstract: Agent-based modeling (ABM) offers powerful insights into complex systems, but its practical utility has been limited by computational constraints and simplistic agent behaviors, especially when simulating large populations. Recent advancements in large language models (LLMs) could enhance ABMs with adaptive agents, but their integration into large-scale simulations remains challenging. This work introduces a novel methodology that bridges this gap by efficiently integrating LLMs into ABMs, enabling the simulation of millions of adaptive agents. We present LLM archetypes, a technique that balances behavioral complexity with computational efficiency, allowing for nuanced agent behavior in large-scale simulations. Our analysis explores the crucial trade-off between simulation scale and individual agent expressiveness, comparing different agent architectures ranging from simple heuristic-based agents to fully adaptive LLM-powered agents. We demonstrate the real-world applicability of our approach through a case study of the COVID-19 pandemic, simulating 8.4 million agents representing New York City and capturing the intricate interplay between health behaviors and economic outcomes. Our method significantly enhances ABM capabilities for predictive and counterfactual analyses, addressing limitations of historical data in policy design. By implementing these advances in an open-source framework, we facilitate the adoption of LLM archetypes across diverse ABM applications. Our results show that LLM archetypes can markedly improve the realism and utility of large-scale ABMs while maintaining computational feasibility, opening new avenues for modeling complex societal challenges and informing data-driven policy decisions.
- Abstract(参考訳): エージェントベースモデリング(ABM)は複雑なシステムに対する強力な洞察を提供するが、その実用性は計算の制約や単純化されたエージェントの振る舞いによって制限されている。
大規模言語モデル(LLM)の最近の進歩は、適応エージェントによるABMを強化する可能性があるが、大規模なシミュレーションへの統合は依然として困難である。
この研究は、LSMをABMに効率的に統合することにより、このギャップを埋める新しい手法を導入し、数百万の適応エージェントのシミュレーションを可能にした。
大規模シミュレーションにおいて,行動複雑性と計算効率のバランスをとる手法であるLSMアーチタイプを提案する。
本分析では,単純ヒューリスティックエージェントから完全適応LDMエージェントまで,さまざまなエージェントアーキテクチャを比較し,シミュレーションスケールと個々のエージェント表現性との間の重要なトレードオフについて検討する。
我々は、新型コロナウイルス(COVID-19)パンデミックのケーススタディを通じて、実際のアプローチの適用性を実証し、ニューヨーク市を代表する840万人のエージェントをシミュレートし、健康行動と経済成果の間の複雑な相互作用を捉えた。
本手法は, 政策設計における履歴データの限界に対処し, 予測的, 対実的分析のためのABM機能を大幅に向上させる。
これらの進歩をオープンソースフレームワークに実装することにより、多様なAMMアプリケーションにまたがるLLMアーチタイプの採用が容易になる。
以上の結果から, LLMのアーキタイプは, 計算能力を維持しつつ, 大規模ABMの現実性と実用性を著しく向上し, 複雑な社会的課題をモデル化し, データ駆動型政策決定を行うための新たな道を開いた。
関連論文リスト
- Proactive Agent: Shifting LLM Agents from Reactive Responses to Active Assistance [95.03771007780976]
我々は、人間の指示なしにタスクを予測および開始できるプロアクティブエージェントを開発するという課題に取り組む。
まず,実世界の人的活動を収集し,前向きなタスク予測を生成する。
これらの予測は、ヒトのアノテータによって受け入れられるか拒否されるかのどちらかとしてラベル付けされる。
ラベル付きデータは、人間の判断をシミュレートする報酬モデルをトレーニングするために使用される。
論文 参考訳(メタデータ) (2024-10-16T08:24:09Z) - AgentGym: Evolving Large Language Model-based Agents across Diverse Environments [116.97648507802926]
大規模言語モデル(LLM)はそのようなエージェントを構築するための有望な基盤と考えられている。
我々は、自己進化能力を備えた一般機能 LLM ベースのエージェントを構築するための第一歩を踏み出す。
我々はAgentGymを提案する。AgentGymは、幅広い、リアルタイム、ユニフォーマット、並行エージェント探索のための様々な環境とタスクを特徴とする新しいフレームワークである。
論文 参考訳(メタデータ) (2024-06-06T15:15:41Z) - Agent-FLAN: Designing Data and Methods of Effective Agent Tuning for Large Language Models [56.00992369295851]
オープンソースのLarge Language Models(LLM)は、さまざまなNLPタスクで大きな成功を収めていますが、エージェントとして振る舞う場合、それでもAPIベースのモデルよりもはるかに劣っています。
本稿では,(1) エージェント学習コーパスを,(1) エージェント学習データの分布から大きくシフトするエージェント推論と,(2) エージェントタスクが必要とする能力に異なる学習速度を示すエージェント学習コーパスと,(3) 幻覚を導入することでエージェント能力を改善する際の副作用について述べる。
本稿では,エージェントのためのFLANモデルを効果的に構築するためのエージェントFLANを提案する。
論文 参考訳(メタデータ) (2024-03-19T16:26:10Z) - Affordable Generative Agents [16.372072265248192]
AGA(Affordable Generative Agents)は、エージェント環境とエージェント間の両方のレベルで、信頼性と低コストのインタラクションの生成を可能にするフレームワークである。
私たちのコードは、https://github.com/AffordableGenerative-Agents/Affordable-Generative-Agentsで公開されています。
論文 参考訳(メタデータ) (2024-02-03T06:16:28Z) - KwaiAgents: Generalized Information-seeking Agent System with Large
Language Models [33.59597020276034]
人間は批判的思考、計画、リフレクション、世界と対話し解釈するための利用可能なツールの活用に優れています。
大規模言語モデル(LLM)の最近の進歩は、マシンが前述の人間のような能力を持っていることも示唆している。
LLMに基づく汎用情報検索システムであるKwaiAgentsを紹介する。
論文 参考訳(メタデータ) (2023-12-08T08:11:11Z) - Fact-based Agent modeling for Multi-Agent Reinforcement Learning [6.431977627644292]
Fact-based Agent Modeling (FAM) 法は,Fact-based belief inference (FBI) ネットワークがローカル情報のみに基づいて,部分的に観測可能な環境下で他のエージェントをモデル化する手法である。
種々のマルチエージェント粒子環境(MPE)上でFAMを評価し,その結果を最先端のMARLアルゴリズムと比較した。
論文 参考訳(メタデータ) (2023-10-18T19:43:38Z) - AgentBench: Evaluating LLMs as Agents [88.45506148281379]
大規模言語モデル(LLM)は、従来のNLPタスクを超えた現実的な実用的ミッションをターゲットとして、ますます賢く自律的になってきています。
我々は,現在8つの異なる環境からなるベンチマークであるAgentBenchを紹介し,LLM-as-Agentの推論と意思決定能力を評価する。
論文 参考訳(メタデータ) (2023-08-07T16:08:11Z) - Modeling Bounded Rationality in Multi-Agent Simulations Using Rationally
Inattentive Reinforcement Learning [85.86440477005523]
我々は、人間不合理性の確立されたモデルであるRational Inattention(RI)モデルを含む、より人間的なRLエージェントについて検討する。
RIRLは、相互情報を用いた認知情報処理のコストをモデル化する。
我々は、RIRLを用いることで、合理的な仮定の下で発見されたものと異なる、新しい平衡挙動の豊富なスペクトルが得られることを示す。
論文 参考訳(メタデータ) (2022-01-18T20:54:00Z) - ERMAS: Becoming Robust to Reward Function Sim-to-Real Gaps in
Multi-Agent Simulations [110.72725220033983]
Epsilon-Robust Multi-Agent Simulation (ERMAS)は、このようなマルチエージェントのsim-to-realギャップに対して堅牢なAIポリシーを学ぶためのフレームワークである。
ERMASは、エージェントリスク回避の変化に対して堅牢な税政策を学び、複雑な時間シミュレーションで最大15%社会福祉を改善する。
特に、ERMASは、エージェントリスク回避の変化に対して堅牢な税制政策を学び、複雑な時間シミュレーションにおいて、社会福祉を最大15%改善する。
論文 参考訳(メタデータ) (2021-06-10T04:32:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。