論文の概要: On the limits of agency in agent-based models
- arxiv url: http://arxiv.org/abs/2409.10568v3
- Date: Sun, 10 Nov 2024 21:31:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:03:53.757025
- Title: On the limits of agency in agent-based models
- Title(参考訳): エージェントベースモデルにおけるエージェンシーの限界について
- Authors: Ayush Chopra, Shashank Kumar, Nurullah Giray-Kuru, Ramesh Raskar, Arnau Quera-Bofarull,
- Abstract要約: エージェントベースモデリングは複雑なシステムに対する強力な洞察を提供するが、その実用性は計算の制約によって制限されている。
大規模言語モデル(LLM)の最近の進歩は、適応エージェントによるABMを強化する可能性があるが、大規模なシミュレーションへの統合は依然として困難である。
大規模シミュレーションにおいて,行動複雑性と計算効率のバランスをとる手法であるLSMアーチタイプを提案する。
- 参考スコア(独自算出の注目度): 13.130587222524305
- License:
- Abstract: Agent-based modeling (ABM) offers powerful insights into complex systems, but its practical utility has been limited by computational constraints and simplistic agent behaviors, especially when simulating large populations. Recent advancements in large language models (LLMs) could enhance ABMs with adaptive agents, but their integration into large-scale simulations remains challenging. This work introduces a novel methodology that bridges this gap by efficiently integrating LLMs into ABMs, enabling the simulation of millions of adaptive agents. We present LLM archetypes, a technique that balances behavioral complexity with computational efficiency, allowing for nuanced agent behavior in large-scale simulations. Our analysis explores the crucial trade-off between simulation scale and individual agent expressiveness, comparing different agent architectures ranging from simple heuristic-based agents to fully adaptive LLM-powered agents. We demonstrate the real-world applicability of our approach through a case study of the COVID-19 pandemic, simulating 8.4 million agents representing New York City and capturing the intricate interplay between health behaviors and economic outcomes. Our method significantly enhances ABM capabilities for predictive and counterfactual analyses, addressing limitations of historical data in policy design. By implementing these advances in an open-source framework, we facilitate the adoption of LLM archetypes across diverse ABM applications. Our results show that LLM archetypes can markedly improve the realism and utility of large-scale ABMs while maintaining computational feasibility, opening new avenues for modeling complex societal challenges and informing data-driven policy decisions.
- Abstract(参考訳): エージェントベースモデリング(ABM)は複雑なシステムに対する強力な洞察を提供するが、その実用性は計算の制約や単純化されたエージェントの振る舞いによって制限されている。
大規模言語モデル(LLM)の最近の進歩は、適応エージェントによるABMを強化する可能性があるが、大規模なシミュレーションへの統合は依然として困難である。
この研究は、LSMをABMに効率的に統合することにより、このギャップを埋める新しい手法を導入し、数百万の適応エージェントのシミュレーションを可能にした。
大規模シミュレーションにおいて,行動複雑性と計算効率のバランスをとる手法であるLSMアーチタイプを提案する。
本分析では,単純ヒューリスティックエージェントから完全適応LDMエージェントまで,さまざまなエージェントアーキテクチャを比較し,シミュレーションスケールと個々のエージェント表現性との間の重要なトレードオフについて検討する。
我々は、新型コロナウイルス(COVID-19)パンデミックのケーススタディを通じて、実際のアプローチの適用性を実証し、ニューヨーク市を代表する840万人のエージェントをシミュレートし、健康行動と経済成果の間の複雑な相互作用を捉えた。
本手法は, 政策設計における履歴データの限界に対処し, 予測的, 対実的分析のためのABM機能を大幅に向上させる。
これらの進歩をオープンソースフレームワークに実装することにより、多様なAMMアプリケーションにまたがるLLMアーチタイプの採用が容易になる。
以上の結果から, LLMのアーキタイプは, 計算能力を維持しつつ, 大規模ABMの現実性と実用性を著しく向上し, 複雑な社会的課題をモデル化し, データ駆動型政策決定を行うための新たな道を開いた。
関連論文リスト
- SRAP-Agent: Simulating and Optimizing Scarce Resource Allocation Policy with LLM-based Agent [45.41401816514924]
本稿では,大規模言語モデル(LLM)を経済シミュレーションに統合する,革新的なフレームワークSRAP-Agentを提案する。
我々は、SRAP-Agentの有効性と有効性を検証するために、広範な政策シミュレーション実験を行う。
論文 参考訳(メタデータ) (2024-10-18T03:43:42Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
大規模言語モデル(LLM)は、不確実性の下で最適な意思決定を必要とするシナリオにおいて、未調査のままである。
多くのアプリケーションに関係のあるステートレス強化学習環境である,帯域幅を最適に決定できる LLM の (in) 能力の測定を行う。
最適な探索アルゴリズムの存在を動機として,このアルゴリズム知識をLLMに統合する効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-10-08T17:54:03Z) - On the Modeling Capabilities of Large Language Models for Sequential Decision Making [52.128546842746246]
大規模な事前訓練されたモデルでは、推論や計画タスクのパフォーマンスがますます向上している。
我々は、直接的または間接的に、意思決定ポリシーを作成する能力を評価する。
未知の力学を持つ環境において、合成データを用いた微調整LDMが報酬モデリング能力を大幅に向上させる方法について検討する。
論文 参考訳(メタデータ) (2024-10-08T03:12:57Z) - GenSim: A General Social Simulation Platform with Large Language Model based Agents [111.00666003559324]
我々はtextitGenSim と呼ばれる新しい大規模言語モデル (LLM) ベースのシミュレーションプラットフォームを提案する。
我々のプラットフォームは10万のエージェントをサポートし、現実世界のコンテキストで大規模人口をシミュレートする。
我々の知る限り、GenSimは汎用的で大規模で修正可能な社会シミュレーションプラットフォームに向けた最初の一歩である。
論文 参考訳(メタデータ) (2024-10-06T05:02:23Z) - Coalitions of Large Language Models Increase the Robustness of AI Agents [3.216132991084434]
大規模言語モデル(LLM)は、私たちがデジタルシステムと対話する方法を根本的に変えました。
LLMは強力で、いくつかの創発的な特性を示すことができるが、AIエージェントによって実行されるすべてのサブタスクでうまく機能するのに苦労する。
個別のサブタスクで特別性能を示す事前訓練されたLLMの連立系が,単一モデルエージェントの性能に適合するかどうかを評価する。
論文 参考訳(メタデータ) (2024-08-02T16:37:44Z) - Enhancing the General Agent Capabilities of Low-Parameter LLMs through Tuning and Multi-Branch Reasoning [56.82041895921434]
オープンソースの事前訓練された大規模言語モデル(LLM)は、強力な言語理解と生成能力を示す。
現実世界の複雑な問題に対処するエージェントとして使用される場合、ChatGPTやGPT-4のような大型の商用モデルに比べてパフォーマンスははるかに劣る。
論文 参考訳(メタデータ) (2024-03-29T03:48:12Z) - Large Language Model-based Human-Agent Collaboration for Complex Task
Solving [94.3914058341565]
複雑なタスク解決のためのLarge Language Models(LLM)に基づくヒューマンエージェントコラボレーションの問題を紹介する。
Reinforcement Learning-based Human-Agent Collaboration method, ReHACを提案する。
このアプローチには、タスク解決プロセスにおける人間の介入の最も急進的な段階を決定するために設計されたポリシーモデルが含まれている。
論文 参考訳(メタデータ) (2024-02-20T11:03:36Z) - Model-Based RL for Mean-Field Games is not Statistically Harder than Single-Agent RL [57.745700271150454]
モデルに基づく関数近似を用いた平均フィールドゲーム(MFG)における強化学習のサンプル複雑性について検討した。
本稿では、モデルクラスの複雑性を特徴付けるためのより効果的な概念である部分モデルベースエルダー次元(P-MBED)を紹介する。
論文 参考訳(メタデータ) (2024-02-08T14:54:47Z) - Solution-oriented Agent-based Models Generation with Verifier-assisted
Iterative In-context Learning [10.67134969207797]
エージェントベースのモデル(ABM)は、仮説的な解決策やポリシーの提案と検証に不可欠なパラダイムである。
大きな言語モデル(LLM)は、ドメイン間の知識とプログラミング能力をカプセル化することで、このプロセスの難しさを軽減できる可能性がある。
SAGEは、ターゲット問題に対する自動モデリングおよびソリューション生成のために設計された、汎用的なソリューション指向のABM生成フレームワークである。
論文 参考訳(メタデータ) (2024-02-04T07:59:06Z) - Computational Experiments Meet Large Language Model Based Agents: A
Survey and Perspective [16.08517740276261]
計算実験は複雑なシステムを研究するための貴重な方法として登場した。
エージェントベースモデリング(ABM)における実際の社会システムを正確に表現することは、人間の多様性と複雑な特性のために困難である。
大規模言語モデル(LLM)の統合が提案され、エージェントが人為的な能力を持つことができる。
論文 参考訳(メタデータ) (2024-02-01T01:17:46Z) - Smart Agent-Based Modeling: On the Use of Large Language Models in
Computer Simulations [19.84766478633828]
エージェントベースモデリング(ABM)は、複雑なシステムダイナミクスをエミュレートするために個々のエージェントの相互作用を利用する。
本稿では,GPT のような大規模言語モデル (LLM) を ABM に組み込むことにより,これらの境界を超越する手法を提案する。
このアマルガメーションは、新しいフレームワーク、スマートエージェントベースモデリング(SABM)を生み出す。
論文 参考訳(メタデータ) (2023-11-10T18:54:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。