High-fidelity and Fault-tolerant Teleportation of a Logical Qubit using Transversal Gates and Lattice Surgery on a Trapped-ion Quantum Computer
- URL: http://arxiv.org/abs/2404.16728v1
- Date: Thu, 25 Apr 2024 16:40:21 GMT
- Title: High-fidelity and Fault-tolerant Teleportation of a Logical Qubit using Transversal Gates and Lattice Surgery on a Trapped-ion Quantum Computer
- Authors: C. Ryan-Anderson, N. C. Brown, C. H. Baldwin, J. M. Dreiling, C. Foltz, J. P. Gaebler, T. M. Gatterman, N. Hewitt, C. Holliman, C. V. Horst, J. Johansen, D. Lucchetti, T. Mengle, M. Matheny, Y. Matsuoka, K. Mayer, M. Mills, S. A. Moses, B. Neyenhuis, J. Pino, P. Siegfried, R. P. Stutz, J. Walker, D. Hayes,
- Abstract summary: We implement the first demonstration of a fault-tolerant state teleportation circuit for a quantum error correction.
The circuits use up to 30 trapped ions physical layer qubits and employ real-time quantum error correction.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum state teleportation is commonly used in designs for large-scale fault-tolerant quantum computers. Using Quantinuum's H2 trapped-ion quantum processor, we implement the first demonstration of a fault-tolerant state teleportation circuit for a quantum error correction code - in particular, the planar topological [[7,1,3]] color code, or Steane code. The circuits use up to 30 trapped ions at the physical layer qubits and employ real-time quantum error correction - decoding mid-circuit measurement of syndromes and implementing corrections during the protocol. We conduct experiments on several variations of logical teleportation circuits using both transversal gates and lattice surgery protocols. Among the many measurements we report on, we measure the logical process fidelity of the transversal teleportation circuit to be 0.975(2) and the logical process fidelity of the lattice surgery teleportation circuit to be 0.851(9). Additionally, we run a teleportation circuit that is equivalent to Knill-style quantum error correction and measure the process fidelity to be 0.989(2).
Related papers
- Demonstrating real-time and low-latency quantum error correction with superconducting qubits [52.08698178354922]
We demonstrate low-latency feedback with a scalable FPGA decoder integrated into a superconducting quantum processor.
We observe logical error suppression as the number of decoding rounds is increased.
The decoder throughput and latency developed in this work, combined with continued device improvements, unlock the next generation of experiments.
arXiv Detail & Related papers (2024-10-07T17:07:18Z) - Transversal CNOT gate with multi-cycle error correction [1.7359033750147501]
A scalable and programmable quantum computer holds the potential to solve computationally intensive tasks that computers cannot accomplish within a reasonable time frame, achieving quantum advantage.
The vulnerability of the current generation of quantum processors to errors poses a significant challenge towards executing complex and deep quantum circuits required for practical problems.
Our work establishes the feasibility of employing logical CNOT gates alongside error detection on a superconductor-based processor using current generation quantum hardware.
arXiv Detail & Related papers (2024-06-18T04:50:15Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Transversal Injection: A method for direct encoding of ancilla states
for non-Clifford gates using stabiliser codes [55.90903601048249]
We introduce a protocol to potentially reduce this overhead for non-Clifford gates.
Preliminary results hint at high quality fidelities at larger distances.
arXiv Detail & Related papers (2022-11-18T06:03:10Z) - Protecting Expressive Circuits with a Quantum Error Detection Code [0.0]
We develop a quantum error detection code for implementations on existing trapped-ion computers.
By encoding $k$ logical qubits into $k+2$ physical qubits, this code presents fault-tolerant state initialisation and syndrome measurement circuits.
arXiv Detail & Related papers (2022-11-12T16:46:35Z) - Fault-tolerant circuit synthesis for universal fault-tolerant quantum
computing [0.0]
We present a quantum circuit synthesis algorithm for implementing universal fault-tolerant quantum computing based on geometricd codes.
We show how to synthesize the set of universal fault-tolerant protocols for $[[7,1,3]]$ Steane code and the syndrome measurement protocol of $[[23, 1, 7]]$ Golay code.
arXiv Detail & Related papers (2022-06-06T15:43:36Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z) - Quantum teleportation of physical qubits into logical code-spaces [12.44010756857228]
Quantum gate teleportation has been proposed as an elegant solution to this problem.
We create a maximally entangled state between a physical and an error-correctable logical qubit.
We then demonstrate the teleportation of quantum information encoded on the physical qubit into the error-corrected logical qubit with fidelities up to 0.786.
arXiv Detail & Related papers (2020-09-14T07:50:49Z) - Entangling logical qubits with lattice surgery [47.037230560588604]
We show the experimental realization of lattice surgery between two topologically encoded qubits in a 10-qubit ion trap quantum information processor.
In particular, we demonstrate entanglement between two logical qubits and we implement logical state teleportation.
arXiv Detail & Related papers (2020-06-04T18:00:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.