Realizing Lattice Surgery on Two Distance-Three Repetition Codes with Superconducting Qubits
- URL: http://arxiv.org/abs/2501.04612v1
- Date: Wed, 08 Jan 2025 16:49:27 GMT
- Title: Realizing Lattice Surgery on Two Distance-Three Repetition Codes with Superconducting Qubits
- Authors: Ilya Besedin, Michael Kerschbaum, Jonathan Knoll, Ian Hesner, Lukas Bödeker, Luis Colmenarez, Luca Hofele, Nathan Lacroix, Christoph Hellings, François Swiadek, Alexander Flasby, Mohsen Bahrami Panah, Dante Colao Zanuz, Markus Müller, Andreas Wallraff,
- Abstract summary: We demonstrate lattice surgery between two distance-three repetition-code qubits by splitting a single distance-three surface-code qubit.
We achieve an improvement in the value of the decoded $ZZ$ logical two-qubit observable compared to a similar non-encoded circuit.
- Score: 31.25958618453706
- License:
- Abstract: Quantum error correction is needed for quantum computers to be capable of fault-tolerantly executing algorithms using hundreds of logical qubits. Recent experiments have demonstrated subthreshold error rates for state preservation of a single logical qubit. In addition, the realization of universal quantum computation requires the implementation of logical entangling gates. Lattice surgery offers a practical approach for implementing such gates, particularly in planar quantum processor layouts. In this work, we demonstrate lattice surgery between two distance-three repetition-code qubits by splitting a single distance-three surface-code qubit. Using a quantum circuit fault-tolerant to bit-flip errors, we achieve an improvement in the value of the decoded $ZZ$ logical two-qubit observable compared to a similar non-encoded circuit. By preparing the surface-code qubit in initial states parametrized by a varying polar angle, we evaluate the performance of the lattice surgery operation for non-cardinal states on the logical Bloch sphere and employ logical two-qubit tomography to reconstruct the Pauli transfer matrix of the operation. In this way, we demonstrate the functional building blocks needed for lattice surgery operations on larger-distance codes based on superconducting circuits.
Related papers
- Experimental Demonstration of Logical Magic State Distillation [62.77974948443222]
We present the experimental realization of magic state distillation with logical qubits on a neutral-atom quantum computer.
Our approach makes use of a dynamically reconfigurable architecture to encode and perform quantum operations on many logical qubits in parallel.
arXiv Detail & Related papers (2024-12-19T18:38:46Z) - Geometric structure and transversal logic of quantum Reed-Muller codes [51.11215560140181]
In this paper, we aim to characterize the gates of quantum Reed-Muller (RM) codes by exploiting the well-studied properties of their classical counterparts.
A set of stabilizer generators for a RM code can be described via $X$ and $Z$ operators acting on subcubes of particular dimensions.
arXiv Detail & Related papers (2024-10-10T04:07:24Z) - Efficient fault-tolerant code switching via one-way transversal CNOT gates [0.0]
We present a code scheme that respects the constraints of FT circuit design by only making use of switching gates.
We analyze application of the scheme to low-distance color codes, which are suitable for operation in existing quantum processors.
We discuss how the scheme can be implemented with a large degree of parallelization, provided that logical auxiliary qubits can be prepared reliably enough.
arXiv Detail & Related papers (2024-09-20T12:54:47Z) - Logical quantum processor based on reconfigurable atom arrays [27.489364850707926]
We report the realization of a programmable quantum processor based on encoded logical qubits operating with up to 280 physical qubits.
Results herald the advent of early error-corrected quantum computation.
arXiv Detail & Related papers (2023-12-07T01:54:45Z) - Fault-Tolerant Code Switching Protocols for Near-Term Quantum Processors [0.0]
Top color codes are widely acknowledged as promising candidates for fault-tolerant quantum computing.
Top color codes can provide a universal gate set $$H, T, C$$, with the T-gate missing in the T-dimensional and the H-gate in the three-dimensional case.
We construct resource-optimized deterministic and non-deterministic code switching protocols for two- and three-dimensional distance-three color codes.
arXiv Detail & Related papers (2023-06-30T14:16:52Z) - Transversal Injection: A method for direct encoding of ancilla states
for non-Clifford gates using stabiliser codes [55.90903601048249]
We introduce a protocol to potentially reduce this overhead for non-Clifford gates.
Preliminary results hint at high quality fidelities at larger distances.
arXiv Detail & Related papers (2022-11-18T06:03:10Z) - Fault-tolerant circuit synthesis for universal fault-tolerant quantum
computing [0.0]
We present a quantum circuit synthesis algorithm for implementing universal fault-tolerant quantum computing based on geometricd codes.
We show how to synthesize the set of universal fault-tolerant protocols for $[[7,1,3]]$ Steane code and the syndrome measurement protocol of $[[23, 1, 7]]$ Golay code.
arXiv Detail & Related papers (2022-06-06T15:43:36Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Entangling logical qubits with lattice surgery [47.037230560588604]
We show the experimental realization of lattice surgery between two topologically encoded qubits in a 10-qubit ion trap quantum information processor.
In particular, we demonstrate entanglement between two logical qubits and we implement logical state teleportation.
arXiv Detail & Related papers (2020-06-04T18:00:09Z) - Deterministic correction of qubit loss [48.43720700248091]
Loss of qubits poses one of the fundamental obstacles towards large-scale and fault-tolerant quantum information processors.
We experimentally demonstrate the implementation of a full cycle of qubit loss detection and correction on a minimal instance of a topological surface code.
arXiv Detail & Related papers (2020-02-21T19:48:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.