論文の概要: DrS: Learning Reusable Dense Rewards for Multi-Stage Tasks
- arxiv url: http://arxiv.org/abs/2404.16779v1
- Date: Thu, 25 Apr 2024 17:28:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 13:01:06.702485
- Title: DrS: Learning Reusable Dense Rewards for Multi-Stage Tasks
- Title(参考訳): DrS: マルチステージタスクのための再利用可能なDense Rewardsの学習
- Authors: Tongzhou Mu, Minghua Liu, Hao Su,
- Abstract要約: 我々は,多段階タスクにおける再利用可能な高密度報酬を学習するための新しいアプローチであるDrS(Dense reward Learning from Stages)を提案する。
タスクのステージ構造を活用することで、DrSはスパース報酬やデモから高品質の高密度報酬を学ぶ。
1000以上のタスク変異を持つ3つの物理的ロボット操作タスクファミリーの実験は、学習した報酬を目に見えないタスクで再利用できることを実証している。
- 参考スコア(独自算出の注目度): 26.730889757506915
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The success of many RL techniques heavily relies on human-engineered dense rewards, which typically demand substantial domain expertise and extensive trial and error. In our work, we propose DrS (Dense reward learning from Stages), a novel approach for learning reusable dense rewards for multi-stage tasks in a data-driven manner. By leveraging the stage structures of the task, DrS learns a high-quality dense reward from sparse rewards and demonstrations if given. The learned rewards can be \textit{reused} in unseen tasks, thus reducing the human effort for reward engineering. Extensive experiments on three physical robot manipulation task families with 1000+ task variants demonstrate that our learned rewards can be reused in unseen tasks, resulting in improved performance and sample efficiency of RL algorithms. The learned rewards even achieve comparable performance to human-engineered rewards on some tasks. See our project page (https://sites.google.com/view/iclr24drs) for more details.
- Abstract(参考訳): 多くのRL技術の成功は、人間工学的な高密度報酬に大きく依存している。
本研究では,DrS(Dense reward Learning from Stages)を提案する。DrS(Dense reward Learning from Stages)は,多段階タスクに対する再利用可能な高密度報酬をデータ駆動方式で学習するための新しいアプローチである。
タスクのステージ構造を活用することで、DrSはスパース報酬やデモから高品質の高密度報酬を学ぶ。
学習した報酬は目に見えないタスクではtextit{reused} となり、それによって報酬工学に対する人間の労力が減る。
1000以上のタスク変異を持つ3つの物理ロボット操作タスクファミリーに対する大規模な実験により、学習した報酬を目に見えないタスクで再利用できることが示され、その結果、RLアルゴリズムの性能とサンプル効率が向上した。
学習した報酬は、あるタスクにおける人間工学的な報酬と同等のパフォーマンスを達成する。
詳細はプロジェクトのページ(https://sites.google.com/view/iclr24drs)を参照してください。
関連論文リスト
- On-Robot Reinforcement Learning with Goal-Contrastive Rewards [24.415607337006968]
強化学習(Reinforcement Learning, RL)は、ロボットが現実世界で自身の行動から学ぶことができる能力を持つ。
我々は、受動的ビデオデモでトレーニング可能な高密度報酬関数学習法であるGCR(Goal-intensiveive Rewards)を提案する。
GCRは2つの損失関数、成功軌跡を走行する際の報酬の増大をモデル化する暗黙値損失関数、そして成功軌跡と失敗軌跡を区別する目標コントラスト損失を組み合わせた。
論文 参考訳(メタデータ) (2024-10-25T22:11:54Z) - Affordance-Guided Reinforcement Learning via Visual Prompting [51.361977466993345]
Keypoint-based Affordance Guidance for Improvements (KAGI) は、視覚言語モデル(VLM)によって形成される報酬を自律的なRLに活用する手法である。
自然言語記述によって指定された実世界の操作タスクにおいて、KAGIは自律的なRLのサンプル効率を改善し、20Kのオンライン微調整ステップでタスク完了を成功させる。
論文 参考訳(メタデータ) (2024-07-14T21:41:29Z) - Go Beyond Imagination: Maximizing Episodic Reachability with World
Models [68.91647544080097]
本稿では,GoBI-Go Beyond Imaginationという新たな固有報酬設計を提案する。
学習した世界モデルを用いて、ランダムな動作で予測された将来の状態を生成する。
本手法は,Minigridナビゲーションタスクの12の課題において,従来の最先端手法よりも大幅に優れていた。
論文 参考訳(メタデータ) (2023-08-25T20:30:20Z) - Fantastic Rewards and How to Tame Them: A Case Study on Reward Learning
for Task-oriented Dialogue Systems [111.80916118530398]
強化学習(RL)技術は、ユーザ固有の目標を達成するための対話戦略を訓練するために、自然に利用することができる。
本稿では,エンド・ツー・エンド(E2E)TODエージェントのトレーニングにおいて,報酬関数を効果的に学習し,活用する方法という疑問に答えることを目的とする。
論文 参考訳(メタデータ) (2023-02-20T22:10:04Z) - Reinforcement learning with Demonstrations from Mismatched Task under
Sparse Reward [7.51772160511614]
強化学習は、現実世界のロボティクス問題において、希少な報酬問題に悩まされることが多い。
先行研究はしばしば、学習エージェントと専門家が同じタスクを達成しようとしていると仮定する。
本稿では,対象タスクと専門家のタスクとが一致しない場合について考察する。
既存のLfD手法では、ミスマッチした新しいタスクにおける学習をスパース報酬で効果的に導くことはできない。
論文 参考訳(メタデータ) (2022-12-03T02:24:59Z) - Handling Sparse Rewards in Reinforcement Learning Using Model Predictive
Control [9.118706387430883]
強化学習(RL)は近年,様々な分野で大きな成功を収めている。
しかし、報酬関数の設計には、エージェントが望ましい振る舞いを学べるように、詳細なドメインの専門知識と面倒な微調整が必要である。
本稿では,スパース報酬環境におけるRLエージェントのトレーニング経験源として,モデル予測制御(MPC)を提案する。
論文 参考訳(メタデータ) (2022-10-04T11:06:38Z) - Basis for Intentions: Efficient Inverse Reinforcement Learning using
Past Experience [89.30876995059168]
逆強化学習(IRL) - エージェントの報酬関数をその振る舞いを観察することから推測する。
本稿では、エージェントの報酬関数を観察することのできないIRLの問題に対処する。
論文 参考訳(メタデータ) (2022-08-09T17:29:49Z) - Lipschitz-constrained Unsupervised Skill Discovery [91.51219447057817]
LSD(Lipschitz-Constrained Skill Discovery)は、エージェントがより多様性があり、ダイナミックで、より遠縁なスキルを発見することを奨励する。
LSDは7つの下流タスクにおいて、スキルの多様性、状態空間のカバレッジ、パフォーマンスという点で、従来のアプローチよりも優れています。
論文 参考訳(メタデータ) (2022-02-02T08:29:04Z) - Learning from Guided Play: A Scheduled Hierarchical Approach for
Improving Exploration in Adversarial Imitation Learning [7.51557557629519]
本稿では,主課題,複数の補助課題に加えて,専門家による実演を活用するためのフレームワークであるLearning from Guided Play (LfGP)を紹介する。
主なタスクに対する学習効率は、ボトルネック遷移に挑戦して改善され、専門家データがタスク間で再利用可能になり、学習した補助タスクモデルの再利用を通じて学習を移行することが可能になります。
論文 参考訳(メタデータ) (2021-12-16T14:58:08Z) - A Study on Dense and Sparse (Visual) Rewards in Robot Policy Learning [19.67628391301068]
我々は,様々な種類の報酬の下で,複数の最先端の深層強化学習アルゴリズムの性能について検討した。
以上の結果から,視覚的疎度報酬は視覚的疎度報酬よりも優れており,全てのタスクに最適なアルゴリズムが存在しないことが示唆された。
論文 参考訳(メタデータ) (2021-08-06T17:47:48Z) - Semi-supervised reward learning for offline reinforcement learning [71.6909757718301]
トレーニングエージェントは通常、報酬機能が必要ですが、報酬は実際にはほとんど利用できず、エンジニアリングは困難で手間がかかります。
限定されたアノテーションから学習し,ラベルなしデータを含む半教師付き学習アルゴリズムを提案する。
シミュレーションロボットアームを用いた実験では,動作のクローン化が大幅に向上し,真理の報奨によって達成される性能に近づいた。
論文 参考訳(メタデータ) (2020-12-12T20:06:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。