論文の概要: On-Robot Reinforcement Learning with Goal-Contrastive Rewards
- arxiv url: http://arxiv.org/abs/2410.19989v1
- Date: Fri, 25 Oct 2024 22:11:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:20:54.737382
- Title: On-Robot Reinforcement Learning with Goal-Contrastive Rewards
- Title(参考訳): ゴール・コントラスト・リワードを用いたオンロボット強化学習
- Authors: Ondrej Biza, Thomas Weng, Lingfeng Sun, Karl Schmeckpeper, Tarik Kelestemur, Yecheng Jason Ma, Robert Platt, Jan-Willem van de Meent, Lawson L. S. Wong,
- Abstract要約: 強化学習(Reinforcement Learning, RL)は、ロボットが現実世界で自身の行動から学ぶことができる能力を持つ。
我々は、受動的ビデオデモでトレーニング可能な高密度報酬関数学習法であるGCR(Goal-intensiveive Rewards)を提案する。
GCRは2つの損失関数、成功軌跡を走行する際の報酬の増大をモデル化する暗黙値損失関数、そして成功軌跡と失敗軌跡を区別する目標コントラスト損失を組み合わせた。
- 参考スコア(独自算出の注目度): 24.415607337006968
- License:
- Abstract: Reinforcement Learning (RL) has the potential to enable robots to learn from their own actions in the real world. Unfortunately, RL can be prohibitively expensive, in terms of on-robot runtime, due to inefficient exploration when learning from a sparse reward signal. Designing dense reward functions is labour-intensive and requires domain expertise. In our work, we propose GCR (Goal-Contrastive Rewards), a dense reward function learning method that can be trained on passive video demonstrations. By using videos without actions, our method is easier to scale, as we can use arbitrary videos. GCR combines two loss functions, an implicit value loss function that models how the reward increases when traversing a successful trajectory, and a goal-contrastive loss that discriminates between successful and failed trajectories. We perform experiments in simulated manipulation environments across RoboMimic and MimicGen tasks, as well as in the real world using a Franka arm and a Spot quadruped. We find that GCR leads to a more-sample efficient RL, enabling model-free RL to solve about twice as many tasks as our baseline reward learning methods. We also demonstrate positive cross-embodiment transfer from videos of people and of other robots performing a task. Appendix: \url{https://tinyurl.com/gcr-appendix-2}.
- Abstract(参考訳): 強化学習(Reinforcement Learning, RL)は、ロボットが現実世界で自身の行動から学ぶことができる能力を持つ。
残念なことに、RLは、疎い報酬信号から学ぶ際に非効率な探索のために、オンロボットランタイムの観点からは、違法に高価である可能性がある。
厳密な報酬関数を設計することは労働集約的であり、ドメインの専門知識を必要とする。
本研究は,受動的ビデオデモで学習可能な高密度報酬関数学習法であるGCR(Goal-Contrastive Rewards)を提案する。
アクションのないビデオを使用することで、任意のビデオを使用することができるので、スケールアップが容易になります。
GCRは2つの損失関数、成功軌跡を走行する際の報酬の増大をモデル化する暗黙値損失関数、そして成功軌跡と失敗軌跡を区別する目標コントラスト損失を組み合わせた。
我々は,RoboMimicタスクとMimicGenタスクのシミュレーション操作環境,およびFrankaアームとSpot四足歩行を用いた実世界で実験を行った。
GCRはよりサンプル効率のよいRLとなり、モデルフリーのRLがベースライン報酬学習手法の約2倍のタスクを解くことができることがわかった。
また,作業を行う人やロボットのビデオから,肯定的な異物移動を示す。
Appendix: \url{https://tinyurl.com/gcr-appendix-2}
関連論文リスト
- Affordance-Guided Reinforcement Learning via Visual Prompting [51.361977466993345]
Keypoint-based Affordance Guidance for Improvements (KAGI) は、視覚言語モデル(VLM)によって形成される報酬を自律的なRLに活用する手法である。
自然言語記述によって指定された実世界の操作タスクにおいて、KAGIは自律的なRLのサンプル効率を改善し、20Kのオンライン微調整ステップでタスク完了を成功させる。
論文 参考訳(メタデータ) (2024-07-14T21:41:29Z) - Learning Reward for Robot Skills Using Large Language Models via Self-Alignment [11.639973274337274]
大規模言語モデル(LLM)には、報酬関数の学習を支援する可能性のある、貴重なタスク関連の知識が含まれている。
人間のいない場合に報酬をより効率的に学習する方法を提案する。
論文 参考訳(メタデータ) (2024-05-12T04:57:43Z) - REBEL: A Regularization-Based Solution for Reward Overoptimization in Robotic Reinforcement Learning from Human Feedback [61.54791065013767]
報酬関数とユーザの意図、価値観、社会的規範の相違は、現実世界で破滅的なものになる可能性がある。
人間の嗜好から報酬関数を学習することで、このミスアライメント作業を軽減するための現在の方法。
本稿では,ロボットRLHFフレームワークにおける報酬正規化の新たな概念を提案する。
論文 参考訳(メタデータ) (2023-12-22T04:56:37Z) - Contact Energy Based Hindsight Experience Prioritization [19.42106651692228]
強化学習(RL)アルゴリズムでは,報酬の少ないマルチゴールロボット操作作業が困難である。
Hindsight Experience Replay (HER)のような最近のアルゴリズムは、失敗軌跡を生かして学習を高速化している。
本稿では,コンタクトによるリッチな情報に基づいて,リプレイバッファからサンプルを選択するための,CEBP(Contact Energy Based Prioritization)を提案する。
論文 参考訳(メタデータ) (2023-12-05T11:32:25Z) - Reinforcement Learning with Foundation Priors: Let the Embodied Agent Efficiently Learn on Its Own [59.11934130045106]
我々は、政策、価値、成功-回帰基盤モデルからのガイダンスとフィードバックを活用するために、RLFP(Reinforcement Learning with Foundation Priors)を提案する。
本フレームワークでは,自動報酬関数を用いてより効率的にエージェントを探索できるファウンデーション誘導型アクター・クリティカル(FAC)アルゴリズムを導入する。
本手法は,実ロボットとシミュレーションの両方において,様々な操作タスクにおいて顕著な性能を実現する。
論文 参考訳(メタデータ) (2023-10-04T07:56:42Z) - Few-Shot Preference Learning for Human-in-the-Loop RL [13.773589150740898]
メタラーニングの成功に触発された我々は、先行タスクデータに対する嗜好モデルを事前訓練し、少数のクエリだけで新しいタスクに迅速に適応する。
メタワールドにおける操作ポリシーのトレーニングに必要なオンラインフィードバックの量を20$times$に削減し,実際のフランカ・パンダロボット上での手法の有効性を実証する。
論文 参考訳(メタデータ) (2022-12-06T23:12:26Z) - Learning Reward Functions for Robotic Manipulation by Observing Humans [92.30657414416527]
我々は、ロボット操作ポリシーのタスク非依存報酬関数を学習するために、幅広い操作タスクを解く人間のラベル付きビデオを使用する。
学習された報酬は、タイムコントラストの目的を用いて学習した埋め込み空間におけるゴールまでの距離に基づいている。
論文 参考訳(メタデータ) (2022-11-16T16:26:48Z) - Handling Sparse Rewards in Reinforcement Learning Using Model Predictive
Control [9.118706387430883]
強化学習(RL)は近年,様々な分野で大きな成功を収めている。
しかし、報酬関数の設計には、エージェントが望ましい振る舞いを学べるように、詳細なドメインの専門知識と面倒な微調整が必要である。
本稿では,スパース報酬環境におけるRLエージェントのトレーニング経験源として,モデル予測制御(MPC)を提案する。
論文 参考訳(メタデータ) (2022-10-04T11:06:38Z) - Accelerating Robotic Reinforcement Learning via Parameterized Action
Primitives [92.0321404272942]
強化学習は汎用ロボットシステムの構築に使用することができる。
しかし、ロボット工学の課題を解決するためにRLエージェントを訓練することは依然として困難である。
本研究では,ロボット行動プリミティブ(RAPS)のライブラリを手動で指定し,RLポリシーで学習した引数をパラメータ化する。
動作インターフェースへの簡単な変更は、学習効率とタスクパフォーマンスの両方を大幅に改善する。
論文 参考訳(メタデータ) (2021-10-28T17:59:30Z) - A Study on Dense and Sparse (Visual) Rewards in Robot Policy Learning [19.67628391301068]
我々は,様々な種類の報酬の下で,複数の最先端の深層強化学習アルゴリズムの性能について検討した。
以上の結果から,視覚的疎度報酬は視覚的疎度報酬よりも優れており,全てのタスクに最適なアルゴリズムが存在しないことが示唆された。
論文 参考訳(メタデータ) (2021-08-06T17:47:48Z) - Semi-supervised reward learning for offline reinforcement learning [71.6909757718301]
トレーニングエージェントは通常、報酬機能が必要ですが、報酬は実際にはほとんど利用できず、エンジニアリングは困難で手間がかかります。
限定されたアノテーションから学習し,ラベルなしデータを含む半教師付き学習アルゴリズムを提案する。
シミュレーションロボットアームを用いた実験では,動作のクローン化が大幅に向上し,真理の報奨によって達成される性能に近づいた。
論文 参考訳(メタデータ) (2020-12-12T20:06:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。