Rapid thermalization of dissipative many-body dynamics of commuting Hamiltonians
- URL: http://arxiv.org/abs/2404.16780v1
- Date: Thu, 25 Apr 2024 17:30:37 GMT
- Title: Rapid thermalization of dissipative many-body dynamics of commuting Hamiltonians
- Authors: Jan Kochanowski, Alvaro M. Alhambra, Angela Capel, Cambyse Rouzé,
- Abstract summary: We show that for a large class of geometrically-2-local models of generators with commuting Hamiltonians, the thermalization time is much shorter than one would na" estimate from the gap.
This yields the so-called rapid mixing of dissipative dynamics.
We also prove that systems in hypercubic lattices of any dimension, and exponential graphs, such as trees, have rapid mixing at high enough temperatures.
- Score: 1.8499314936771563
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum systems typically reach thermal equilibrium rather quickly when coupled to a thermal environment. The usual way of bounding the speed of this process is by estimating the spectral gap of the dissipative generator. However the gap, by itself, does not always yield a reasonable estimate for the thermalization time in many-body systems: without further structure, a uniform lower bound on it only constrains the thermalization time to grow polynomially with system size. Here, instead, we show that for a large class of geometrically-2-local models of Davies generators with commuting Hamiltonians, the thermalization time is much shorter than one would na\"ively estimate from the gap: at most logarithmic in the system size. This yields the so-called rapid mixing of dissipative dynamics. The result is particularly relevant for 1D systems, for which we prove rapid thermalization with a system size independent decay rate only from a positive gap in the generator. We also prove that systems in hypercubic lattices of any dimension, and exponential graphs, such as trees, have rapid mixing at high enough temperatures. We do this by introducing a novel notion of clustering which we call "strong local indistinguishability" based on a max-relative entropy, and then proving that it implies a lower bound on the modified logarithmic Sobolev inequality (MLSI) for nearest neighbour commuting models. This has consequences for the rate of thermalization towards Gibbs states, and also for their relevant Wasserstein distances and transportation cost inequalities. Along the way, we show that several measures of decay of correlations on Gibbs states of commuting Hamiltonians are equivalent, a result of independent interest. At the technical level, we also show a direct relation between properties of Davies and Schmidt dynamics, that allows to transfer results of thermalization between both.
Related papers
- Information scrambling and entanglement dynamics in Floquet Time Crystals [49.1574468325115]
We study the dynamics of out-of-time-ordered correlators (OTOCs) and entanglement of entropy as measures of information propagation in disordered systems.
arXiv Detail & Related papers (2024-11-20T17:18:42Z) - Thermalization Dynamics in Closed Quantum Many Body Systems: a Precision Large Scale Exact Diagonalization Study [0.0]
We study the finite-size deviation between the resulting equilibrium state and the thermal state.
We find that the deviations are well described by the eigenstate thermalization hypothesis.
We also find that local observables relax towards equilibrium exponentially with a relaxation time scale that grows linearly with system length.
arXiv Detail & Related papers (2024-09-27T15:58:05Z) - Exponentially slow thermalization and the robustness of Hilbert space
fragmentation [3.074411226628252]
We study how thermalization occurs in situations where the constraints are not exact.
For product states quenched under Hamiltonian dynamics, we numerically observe an exponentially long thermalization time.
Slow thermalization in this model is shown to be a consequence of strong bottlenecks in configuration space.
arXiv Detail & Related papers (2024-01-20T18:40:20Z) - Phenomenology of the Prethermal Many-Body Localized Regime [0.0]
Theory must now account for a large prethermal many-body localized (MBL) regime in which thermalization is extremely slow, but not completely arrested.
We derive a quantitative description of these dynamics using a model of successive many-body resonances.
Successive resonances may also underlie slow thermalization in strongly disordered systems in higher dimensions, or with long-range interactions.
arXiv Detail & Related papers (2022-07-12T18:00:00Z) - Quantum chaos and thermalization in the two-mode Dicke model [77.34726150561087]
We discuss the onset of quantum chaos and thermalization in the two-mode Dicke model.
The two-mode Dicke model exhibits normal to superradiant quantum phase transition.
We show that the temporal fluctuations of the expectation value of the collective spin observable around its average are small and decrease with the effective system size.
arXiv Detail & Related papers (2022-07-08T11:16:29Z) - Non-Abelian eigenstate thermalization hypothesis [58.720142291102135]
The eigenstate thermalization hypothesis (ETH) explains why chaotic quantum many-body systems thermalize internally if the Hamiltonian lacks symmetries.
We adapt the ETH to noncommuting charges by positing a non-Abelian ETH and invoking the approximate microcanonical subspace introduced in quantum thermodynamics.
arXiv Detail & Related papers (2022-06-10T18:14:18Z) - Heat transport and cooling performance in a nanomechanical system with
local and non local interactions [68.8204255655161]
We study heat transport through a one dimensional time-dependent nanomechanical system.
The system presents different stationary transport regimes depending on the driving frequency, temperature gradients and the degree of locality of the interactions.
arXiv Detail & Related papers (2022-02-21T12:03:54Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Out-of-time-order correlations and the fine structure of eigenstate
thermalisation [58.720142291102135]
Out-of-time-orderors (OTOCs) have become established as a tool to characterise quantum information dynamics and thermalisation.
We show explicitly that the OTOC is indeed a precise tool to explore the fine details of the Eigenstate Thermalisation Hypothesis (ETH)
We provide an estimation of the finite-size scaling of $omega_textrmGOE$ for the general class of observables composed of sums of local operators in the infinite-temperature regime.
arXiv Detail & Related papers (2021-03-01T17:51:46Z) - Prethermalisation and Thermalisation in the Entanglement Dynamics [0.0]
We study the entanglement dynamics in a lattice model of weakly interacting spinless fermions after a quantum quench.
For weak enough interactions we observe a two-step relaxation of the entanglement entropies of finite subsystems.
arXiv Detail & Related papers (2020-07-02T17:52:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.