Dual-isometric Projected Entangled Pair States
- URL: http://arxiv.org/abs/2404.16783v4
- Date: Thu, 07 Nov 2024 15:19:31 GMT
- Title: Dual-isometric Projected Entangled Pair States
- Authors: Xie-Hang Yu, J. Ignacio Cirac, Pavel Kos, Georgios Styliaris,
- Abstract summary: We propose a new class of Project Entangled Pair State (PEPS) that incorporates two isometric conditions.
This new class facilitates the efficient calculation of general local observables and certain two-point correlation functions.
We analytically demonstrate that this class can encode universal quantum computations and can represent a transition from topological to trivial order.
- Score: 0.29998889086656577
- License:
- Abstract: Efficient characterization of higher dimensional many-body physical states presents significant challenges. In this paper, we propose a new class of Project Entangled Pair State (PEPS) that incorporates two isometric conditions. This new class facilitates the efficient calculation of general local observables and certain two-point correlation functions, which have been previously shown to be intractable for general PEPS, or PEPS with only a single isometric constraint. Despite incorporating two isometric conditions, our class preserves the rich physical structure while enhancing the analytical capabilities. It features a large set of tunable parameters, with only a subleading correction compared to that of general PEPS. Furthermore, we analytically demonstrate that this class can encode universal quantum computations and can represent a transition from topological to trivial order.
Related papers
- Duality between string and computational order in symmetry-enriched topological phases [0.0]
We present the first examples of topological phases of matter with uniform power for measurement-based quantum computation.
We show that ground states of the toric code in an anisotropic magnetic field yield a natural, albeit non-computationally-universal, application of our framework.
arXiv Detail & Related papers (2024-10-03T17:38:03Z) - Entanglement and the density matrix renormalisation group in the generalised Landau paradigm [0.0]
We leverage the interplay between gapped phases and dualities of symmetric one-dimensional quantum lattice models.
For every phase in the phase diagram, the dual representation of the ground state that breaks all symmetries minimises both the entanglement entropy and the required number of variational parameters.
Our work testifies to the usefulness of generalised non-invertible symmetries and their formal category theoretic description for the nuts and bolts simulation of strongly correlated systems.
arXiv Detail & Related papers (2024-08-12T17:51:00Z) - Exact projected entangled pair ground states with topological Euler invariant [0.4660328753262075]
We report on a class of gapped projected entangled pair states (PEPS) with non-trivial Euler topology.
In the non-interacting limit, these systems have optimal conditions relating to saturation of quantum geometrical bounds.
We reveal characteristic entanglement features shared between the free-fermionc and interacting states with Euler topology.
arXiv Detail & Related papers (2024-07-17T18:00:00Z) - CWF: Consolidating Weak Features in High-quality Mesh Simplification [50.634070540791555]
We propose a smooth functional that simultaneously considers all of these requirements.
The functional comprises a normal anisotropy term and a Centroidal Voronoi Tessellation (CVT) energy term.
arXiv Detail & Related papers (2024-04-24T05:37:17Z) - Random insights into the complexity of two-dimensional tensor network
calculations [0.27708222692419743]
Projected entangled pair states offer memory-efficient representations of some quantum many-body states.
Projected entangled pair states offer memory-efficient representations of some quantum many-body states that obey an entanglement area law.
arXiv Detail & Related papers (2023-07-20T17:34:06Z) - Embed to Control Partially Observed Systems: Representation Learning with Provable Sample Efficiency [105.17746223041954]
Reinforcement learning in partially observed Markov decision processes (POMDPs) faces two challenges.
It often takes the full history to predict the future, which induces a sample complexity that scales exponentially with the horizon.
We propose a reinforcement learning algorithm named Embed to Control (ETC), which learns the representation at two levels while optimizing the policy.
arXiv Detail & Related papers (2022-05-26T16:34:46Z) - Reinforcement Learning from Partial Observation: Linear Function Approximation with Provable Sample Efficiency [111.83670279016599]
We study reinforcement learning for partially observed decision processes (POMDPs) with infinite observation and state spaces.
We make the first attempt at partial observability and function approximation for a class of POMDPs with a linear structure.
arXiv Detail & Related papers (2022-04-20T21:15:38Z) - Relative Pose from SIFT Features [50.81749304115036]
We derive a new linear constraint relating the unknown elements of the fundamental matrix and the orientation and scale.
The proposed constraint is tested on a number of problems in a synthetic environment and on publicly available real-world datasets on more than 80000 image pairs.
arXiv Detail & Related papers (2022-03-15T14:16:39Z) - Gauge invariant quantum circuits for $U(1)$ and Yang-Mills lattice gauge
theories [0.0]
A new class of parametrized quantum circuits can represent states belonging only to the physical sector of the total Hilbert space.
This class of circuits is compact yet flexible enough to be used as a variational ansatz to study ground state properties.
arXiv Detail & Related papers (2021-05-12T18:00:10Z) - Finite-Function-Encoding Quantum States [52.77024349608834]
We introduce finite-function-encoding (FFE) states which encode arbitrary $d$-valued logic functions.
We investigate some of their structural properties.
arXiv Detail & Related papers (2020-12-01T13:53:23Z) - Gaussian Process States: A data-driven representation of quantum
many-body physics [59.7232780552418]
We present a novel, non-parametric form for compactly representing entangled many-body quantum states.
The state is found to be highly compact, systematically improvable and efficient to sample.
It is also proven to be a universal approximator' for quantum states, able to capture any entangled many-body state with increasing data set size.
arXiv Detail & Related papers (2020-02-27T15:54:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.