Exact projected entangled pair ground states with topological Euler invariant
- URL: http://arxiv.org/abs/2407.12902v1
- Date: Wed, 17 Jul 2024 18:00:00 GMT
- Title: Exact projected entangled pair ground states with topological Euler invariant
- Authors: Thorsten B. Wahl, Wojciech J. Jankowski, Adrien Bouhon, Gaurav Chaudhary, Robert-Jan Slager,
- Abstract summary: We report on a class of gapped projected entangled pair states (PEPS) with non-trivial Euler topology.
In the non-interacting limit, these systems have optimal conditions relating to saturation of quantum geometrical bounds.
We reveal characteristic entanglement features shared between the free-fermionc and interacting states with Euler topology.
- Score: 0.4660328753262075
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We report on a class of gapped projected entangled pair states (PEPS) with non-trivial Euler topology motivated by recent progress in band geometry. In the non-interacting limit, these systems have optimal conditions relating to saturation of quantum geometrical bounds, allowing for parent Hamiltonians whose lowest bands are completely flat and which have the PEPS as unique ground states. Protected by crystalline symmetries, these states evade restrictions on capturing tenfold-way topological features with gapped PEPS. These PEPS thus form the first tensor network representative of a non-interacting, gapped two-dimensional topological phase, similar to the Kitaev chain in one dimension. Using unitary circuits, we then formulate interacting variants of these PEPS and corresponding gapped parent Hamiltonians. We reveal characteristic entanglement features shared between the free-fermionc and interacting states with Euler topology. Our results hence provide a rich platform of PEPS models that have, unexpectedly, a finite topological invariant, providing a platform for new spin liquids, quantum Hall physics, and quantum information pursuits.
Related papers
- Projected Entangled Pair States with flexible geometry [0.0]
Projected Entangled Pair States (PEPS) are a class of quantum many-body states that generalize Matrix Product States for one-dimensional systems to higher dimensions.
PEPS have advanced understanding of strongly correlated systems, especially in two dimensions, e.g., quantum spin liquids.
We present a PEPS algorithm to simulate low-energy states and dynamics defined on arbitrary, fluctuating, and densely connected graphs.
arXiv Detail & Related papers (2024-07-30T19:03:52Z) - Measuring topological invariants for higher-order exceptional points in
quantum multipartite systems [1.9978167252091723]
We experimentally quantify the topological invariant for an EP3, by mapping out the complex eigenspectra along a loop surrounding this EP3 in the parameter space.
Our results extend research of exceptional topology to fully quantum-mechanical models with multi-partite entangled eigenstates.
arXiv Detail & Related papers (2024-02-05T09:51:01Z) - Topological multi-mode waveguide QED [49.1574468325115]
We show how to take advantage of topologically protected propagating modes by interfacing them with quantum emitters.
Such capabilities pave the way for generating quantum gates among topologically protected photons as well as generating more complex entangled states of light in topological channels.
arXiv Detail & Related papers (2022-07-05T14:48:50Z) - Non-Gaussian superradiant transition via three-body ultrastrong coupling [62.997667081978825]
We introduce a class of quantum optical Hamiltonian characterized by three-body couplings.
We propose a circuit-QED scheme based on state-of-the-art technology that implements the considered model.
arXiv Detail & Related papers (2022-04-07T15:39:21Z) - Non-Hermitian $C_{NH} = 2$ Chern insulator protected by generalized
rotational symmetry [85.36456486475119]
A non-Hermitian system is protected by the generalized rotational symmetry $H+=UHU+$ of the system.
Our finding paves the way towards novel non-Hermitian topological systems characterized by large values of topological invariants.
arXiv Detail & Related papers (2021-11-24T15:50:22Z) - Knot topology of exceptional point and non-Hermitian no-go theorem [1.2514666672776884]
We provide a topological classification of isolated EPs based on homotopy theory.
The classification indicates that an $n$-th order EP in two dimensions is fully characterized by the braid group B$_n$.
We put forward a non-Hermitian no-go theorem, which governs the possible configurations of EPs.
arXiv Detail & Related papers (2021-11-22T16:52:01Z) - Floquet higher-order topological phases in momentum space [0.0]
Higher-order topological phases (HOTPs) are characterized by symmetry-protected bound states at the corners or hinges of the system.
In this work, we reveal a momentum-space counterpart of HOTPs in time-periodic driven systems.
arXiv Detail & Related papers (2020-12-02T08:26:10Z) - Quantum anomalous Hall phase in synthetic bilayers via twistless
twistronics [58.720142291102135]
We propose quantum simulators of "twistronic-like" physics based on ultracold atoms and syntheticdimensions.
We show that our system exhibits topologicalband structures under appropriate conditions.
arXiv Detail & Related papers (2020-08-06T19:58:05Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Topological Euler class as a dynamical observable in optical lattices [0.0]
We show that the invariant $(xi)$ falls outside conventional symmetry-eigenvalue indicated phases.
We theoretically demonstrate that quenching with non-trivial Euler Hamiltonian results in stable monopole-antimonopole pairs.
Our results provide a basis for exploring new topologies and their interplay with crystalline symmetries in optical lattices beyond paradigmatic Chern insulators.
arXiv Detail & Related papers (2020-05-06T18:00:03Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.