CWF: Consolidating Weak Features in High-quality Mesh Simplification
- URL: http://arxiv.org/abs/2404.15661v1
- Date: Wed, 24 Apr 2024 05:37:17 GMT
- Title: CWF: Consolidating Weak Features in High-quality Mesh Simplification
- Authors: Rui Xu, Longdu Liu, Ningna Wang, Shuangmin Chen, Shiqing Xin, Xiaohu Guo, Zichun Zhong, Taku Komura, Wenping Wang, Changhe Tu,
- Abstract summary: We propose a smooth functional that simultaneously considers all of these requirements.
The functional comprises a normal anisotropy term and a Centroidal Voronoi Tessellation (CVT) energy term.
- Score: 50.634070540791555
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In mesh simplification, common requirements like accuracy, triangle quality, and feature alignment are often considered as a trade-off. Existing algorithms concentrate on just one or a few specific aspects of these requirements. For example, the well-known Quadric Error Metrics (QEM) approach prioritizes accuracy and can preserve strong feature lines/points as well but falls short in ensuring high triangle quality and may degrade weak features that are not as distinctive as strong ones. In this paper, we propose a smooth functional that simultaneously considers all of these requirements. The functional comprises a normal anisotropy term and a Centroidal Voronoi Tessellation (CVT) energy term, with the variables being a set of movable points lying on the surface. The former inherits the spirit of QEM but operates in a continuous setting, while the latter encourages even point distribution, allowing various surface metrics. We further introduce a decaying weight to automatically balance the two terms. We selected 100 CAD models from the ABC dataset, along with 21 organic models, to compare the existing mesh simplification algorithms with ours. Experimental results reveal an important observation: the introduction of a decaying weight effectively reduces the conflict between the two terms and enables the alignment of weak features. This distinctive feature sets our approach apart from most existing mesh simplification methods and demonstrates significant potential in shape understanding.
Related papers
- OCMG-Net: Neural Oriented Normal Refinement for Unstructured Point Clouds [18.234146052486054]
We present a robust refinement method for estimating oriented normals from unstructured point clouds.
Our framework incorporates sign orientation and data augmentation in the feature space to refine the initial oriented normals.
To address the issue of noise-caused direction inconsistency existing in previous approaches, we introduce a new metric called the Chamfer Normal Distance.
arXiv Detail & Related papers (2024-09-02T09:30:02Z) - Fast Point Cloud Geometry Compression with Context-based Residual Coding and INR-based Refinement [19.575833741231953]
We use the KNN method to determine the neighborhoods of raw surface points.
A conditional probability model is adaptive to local geometry, leading to significant rate reduction.
We incorporate an implicit neural representation into the refinement layer, allowing the decoder to sample points on the underlying surface at arbitrary densities.
arXiv Detail & Related papers (2024-08-06T05:24:06Z) - Message-Passing Monte Carlo: Generating low-discrepancy point sets via Graph Neural Networks [64.39488944424095]
We present the first machine learning approach to generate low-discrepancy point sets named Message-Passing Monte Carlo points.
MPMC points are empirically shown to be either optimal or near-optimal with respect to the discrepancy for low dimension and small number of points.
arXiv Detail & Related papers (2024-05-23T21:17:20Z) - Machine learning a fixed point action for SU(3) gauge theory with a gauge equivariant convolutional neural network [0.0]
Fixed point lattice actions are designed to have continuum classical properties unaffected by discretization effects and reduced lattice artifacts at the quantum level.
Here we use machine learning methods to revisit the question of how to parametrize fixed point actions.
arXiv Detail & Related papers (2024-01-12T10:03:00Z) - FIT: A Metric for Model Sensitivity [1.2622086660704197]
We propose FIT, which combines the Fisher information with a model of quantization.
We find that FIT can estimate the final performance of a network without retraining.
FIT is fast to compute when compared to existing methods, demonstrating favourable convergence properties.
arXiv Detail & Related papers (2022-10-16T10:25:29Z) - BIMS-PU: Bi-Directional and Multi-Scale Point Cloud Upsampling [60.257912103351394]
We develop a new point cloud upsampling pipeline called BIMS-PU.
We decompose the up/downsampling procedure into several up/downsampling sub-steps by breaking the target sampling factor into smaller factors.
We show that our method achieves superior results to state-of-the-art approaches.
arXiv Detail & Related papers (2022-06-25T13:13:37Z) - A Model for Multi-View Residual Covariances based on Perspective
Deformation [88.21738020902411]
We derive a model for the covariance of the visual residuals in multi-view SfM, odometry and SLAM setups.
We validate our model with synthetic and real data and integrate it into photometric and feature-based Bundle Adjustment.
arXiv Detail & Related papers (2022-02-01T21:21:56Z) - Toward Minimal Misalignment at Minimal Cost in One-Stage and Anchor-Free
Object Detection [6.486325109549893]
classification and regression branches have different sensibility to the features from the same scale level and the same spatial location.
We propose a point-based prediction method, which is based on the assumption that the high classification confidence point has the high regression quality, leads to the misalignment problem.
We aim to resolve the phenomenon at minimal cost: a minor adjustment of the head network and a new label assignment method replacing the rigid one.
arXiv Detail & Related papers (2021-12-16T14:22:13Z) - PU-Flow: a Point Cloud Upsampling Networkwith Normalizing Flows [58.96306192736593]
We present PU-Flow, which incorporates normalizing flows and feature techniques to produce dense points uniformly distributed on the underlying surface.
Specifically, we formulate the upsampling process as point in a latent space, where the weights are adaptively learned from local geometric context.
We show that our method outperforms state-of-the-art deep learning-based approaches in terms of reconstruction quality, proximity-to-surface accuracy, and computation efficiency.
arXiv Detail & Related papers (2021-07-13T07:45:48Z) - Dense Non-Rigid Structure from Motion: A Manifold Viewpoint [162.88686222340962]
Non-Rigid Structure-from-Motion (NRSfM) problem aims to recover 3D geometry of a deforming object from its 2D feature correspondences across multiple frames.
We show that our approach significantly improves accuracy, scalability, and robustness against noise.
arXiv Detail & Related papers (2020-06-15T09:15:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.