論文の概要: Continual Learning of Large Language Models: A Comprehensive Survey
- arxiv url: http://arxiv.org/abs/2404.16789v2
- Date: Sun, 30 Jun 2024 02:19:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-02 14:19:57.360859
- Title: Continual Learning of Large Language Models: A Comprehensive Survey
- Title(参考訳): 大規模言語モデルの継続的な学習:包括的調査
- Authors: Haizhou Shi, Zihao Xu, Hengyi Wang, Weiyi Qin, Wenyuan Wang, Yibin Wang, Zifeng Wang, Sayna Ebrahimi, Hao Wang,
- Abstract要約: 静的、コンパイル済み、一般的なデータセットに基づいてトレーニングされた大規模言語モデル(LLMs)は、多くの研究方向や応用を引き起こしている。
そのような方向の1つは、トレーニング済みのLLMを動的データ分散、タスク構造、ユーザの好みに組み込むという、簡単ではない課題に対処する。
CL(Continuous Learning)コミュニティで広く研究されているが、LSMの領域では新たなマニフェストが提示されている。
- 参考スコア(独自算出の注目度): 18.546766135948154
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recent success of large language models (LLMs) trained on static, pre-collected, general datasets has sparked numerous research directions and applications. One such direction addresses the non-trivial challenge of integrating pre-trained LLMs into dynamic data distributions, task structures, and user preferences. Pre-trained LLMs, when tailored for specific needs, often experience significant performance degradation in previous knowledge domains -- a phenomenon known as "catastrophic forgetting". While extensively studied in the continual learning (CL) community, it presents new manifestations in the realm of LLMs. In this survey, we provide a comprehensive overview of the current research progress on LLMs within the context of CL. This survey is structured into four main sections: we first describe an overview of continually learning LLMs, consisting of two directions of continuity: vertical continuity (or vertical continual learning), i.e., continual adaptation from general to specific capabilities, and horizontal continuity (or horizontal continual learning), i.e., continual adaptation across time and domains (Section 3). We then summarize three stages of learning LLMs in the context of modern CL: Continual Pre-Training (CPT), Domain-Adaptive Pre-training (DAP), and Continual Fine-Tuning (CFT) (Section 4). Then we provide an overview of evaluation protocols for continual learning with LLMs, along with the current available data sources (Section 5). Finally, we discuss intriguing questions pertaining to continual learning for LLMs (Section 6). The full list of papers examined in this survey is available at https://github.com/Wang-ML-Lab/llm-continual-learning-survey.
- Abstract(参考訳): 最近の大規模言語モデル(LLM)の成功は、静的で、事前にコンパイルされた一般的なデータセットに基づいて訓練され、多くの研究の方向性と応用を引き起こした。
そのような方向の1つは、トレーニング済みのLLMを動的データ分散、タスク構造、ユーザの好みに組み込むという、簡単ではない課題に対処する。
特定のニーズに合わせて調整された事前訓練されたLLMは、しばしば「破滅的な忘れ物」として知られる、以前の知識領域で顕著なパフォーマンス劣化を経験する。
CL(Continuous Learning)コミュニティで広く研究されているが、LSMの領域では新たなマニフェストが提示されている。
本稿では,CL の文脈における LLM 研究の現状について概観する。
縦連続性(縦連続性学習)、一般から特定の能力への連続的適応(横連続性学習)、横連続性(横連続性学習)、時間と領域をまたいだ連続的適応(第3部)の2つの方向からなる連続的学習 LLM の概要を最初に記述する(第3部)。
次に,CPT(Continuous Pre-Training),DAP(Domain-Adaptive Pre-Training),CFT(Continuous Fine-Tuning)(Section 4)の3つの段階について述べる。
次に、LLMを用いた連続学習のための評価プロトコルの概要と、現在利用可能なデータソースについて概説する(第5部)。
最後に,LLMの継続学習に関する興味深い疑問について論じる(第6部)。
この調査で調査された論文の完全なリストはhttps://github.com/Wang-ML-Lab/llm-continual-learning-surveyで公開されている。
関連論文リスト
- Beyond Binary: Towards Fine-Grained LLM-Generated Text Detection via Role Recognition and Involvement Measurement [51.601916604301685]
大規模言語モデル(LLM)は、オンライン談話における信頼を損なう可能性のあるコンテンツを生成する。
現在の手法はバイナリ分類に重点を置いており、人間とAIのコラボレーションのような現実のシナリオの複雑さに対処できないことが多い。
バイナリ分類を超えてこれらの課題に対処するために,LLM生成コンテンツを検出するための新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2024-10-18T08:14:10Z) - Federated Large Language Models: Current Progress and Future Directions [63.68614548512534]
本稿では,LLM(FedLLM)のフェデレーション学習について調査し,最近の進歩と今後の方向性を明らかにする。
ファインチューニングと迅速な学習という2つの重要な側面に注目し、既存の作業と関連する研究課題について議論する。
論文 参考訳(メタデータ) (2024-09-24T04:14:33Z) - Towards Lifelong Learning of Large Language Models: A Survey [20.0936011355535]
この調査は、生涯学習の洗練された風景を掘り下げ、戦略を2つの主要なグループ、内的知識と内的知識に分類する。
本研究では,実世界のアプリケーションにおける大規模言語モデルの適応性,信頼性,全体的な性能を向上させることを目的とする。
論文 参考訳(メタデータ) (2024-06-10T15:46:25Z) - Recent Advances of Foundation Language Models-based Continual Learning: A Survey [31.171203978742447]
基礎言語モデル (LM) は自然言語処理 (NLP) とコンピュータビジョン (CV) の分野において重要な成果を上げている。
しかし、破滅的な忘れ物のため、人間のような継続的学習をエミュレートすることはできない。
従来の知識を忘れずに新しいタスクに適応できるように、様々な連続学習(CL)ベースの方法論が開発されている。
論文 参考訳(メタデータ) (2024-05-28T23:32:46Z) - Continual Learning for Large Language Models: A Survey [95.79977915131145]
大規模言語モデル(LLM)は、大規模なトレーニングコストが高いため、頻繁な再トレーニングには適さない。
本稿では,LLMの連続学習に関する最近の研究について述べる。
論文 参考訳(メタデータ) (2024-02-02T12:34:09Z) - Examining Forgetting in Continual Pre-training of Aligned Large Language
Models [66.62800021628276]
本研究では,既存の微調整LDMの連続事前訓練中に発生する忘れ現象について検討する。
実験結果は、連続的な事前訓練中に破滅的な忘れに対処する非自明な課題を浮き彫りにした。
論文 参考訳(メタデータ) (2024-01-06T05:34:09Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - A Survey on Large Language Models for Software Engineering [15.468484685849983]
大規模言語モデル(LLM)は、幅広いソフトウェア工学(SE)タスクを自動化するために使われる。
本稿では,LLMを基盤としたSEコミュニティにおける最先端の研究について概説する。
論文 参考訳(メタデータ) (2023-12-23T11:09:40Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
調整された大規模言語モデル(LLM)は、タスク解決、指示に従うこと、安全性を確保することにおいて、例外的な能力を示す。
既存の連続学習ベンチマークでは、LLMをリードする上で十分な課題が欠如している。
LLMにおける継続学習を評価するための新しいベンチマークであるTRACEを紹介する。
論文 参考訳(メタデータ) (2023-10-10T16:38:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。