論文の概要: Improving Diversity of Commonsense Generation by Large Language Models via In-Context Learning
- arxiv url: http://arxiv.org/abs/2404.16807v1
- Date: Thu, 25 Apr 2024 17:52:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 12:51:20.206499
- Title: Improving Diversity of Commonsense Generation by Large Language Models via In-Context Learning
- Title(参考訳): インコンテキスト学習による大規模言語モデルによるコモンセンス生成の多様性向上
- Authors: Tianhui Zhang, Bei Peng, Danushka Bollegala,
- Abstract要約: 生成コモンセンス推論 (Generative Commonsense Reasoning, GCR) は、コモンセンス知識を用いて状況を理解するためのモデルを必要とする。
生成の多様性は、モデルが様々な常識的知識事実を使用する能力を反映しているため、同様に重要である。
そこで本研究では,LLMの世代を多様化し,その品質を保ちながら簡便な手法を提案する。
- 参考スコア(独自算出の注目度): 28.654890118684957
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative Commonsense Reasoning (GCR) requires a model to reason about a situation using commonsense knowledge, while generating coherent sentences. Although the quality of the generated sentences is crucial, the diversity of the generation is equally important because it reflects the model's ability to use a range of commonsense knowledge facts. Large Language Models (LLMs) have shown proficiency in enhancing the generation quality across various tasks through in-context learning (ICL) using given examples without the need for any fine-tuning. However, the diversity aspect in LLM outputs has not been systematically studied before. To address this, we propose a simple method that diversifies the LLM generations, while preserving their quality. Experimental results on three benchmark GCR datasets show that our method achieves an ideal balance between the quality and diversity. Moreover, the sentences generated by our proposed method can be used as training data to improve diversity in existing commonsense generators.
- Abstract(参考訳): 生成コモンセンス推論 (Generative Commonsense Reasoning, GCR) は、コヒーレントな文を生成しながら、コモンセンス知識を用いて状況を理解するモデルを必要とする。
生成した文の品質は重要であるが、モデルが様々な常識的知識事実を使用する能力を反映しているため、生成の多様性も同様に重要である。
大規模言語モデル(LLM)は、微調整を必要とせず、与えられた例を用いて、コンテキスト内学習(ICL)を通じて、様々なタスクにわたる生成品質を向上させる能力を示した。
しかし, LLM出力の多様性については, これまで体系的に研究されていない。
そこで本研究では,LLM世代を多様化し,その品質を保ちつつ,簡易な手法を提案する。
3つのベンチマークGCRデータセットによる実験結果から,本手法は品質と多様性の理想的なバランスを達成できることが示された。
さらに,提案手法により生成された文は,既存のコモンセンスジェネレータの多様性を向上させるためのトレーニングデータとして利用することができる。
関連論文リスト
- Unveiling the Generalization Power of Fine-Tuned Large Language Models [81.70754292058258]
大規模言語モデル(LLM)に固有の内在的一般化能力に微調整が及ぼす影響について検討する。
本研究の主目的は、生成タスクと分類タスクを微調整したモデルが、異なる領域やタスクに一般化する際に異なる振る舞いを示すことである。
生成タスクの微調整中にコンテキスト内学習戦略を統合することで、モデルの一般化能力を高めることができる。
論文 参考訳(メタデータ) (2024-03-14T08:18:59Z) - Exploring Precision and Recall to assess the quality and diversity of LLMs [82.21278402856079]
我々はtextscLlama-2 や textscMistral のような大規模言語モデル (LLM) のための新しい評価フレームワークを提案する。
このアプローチにより、コーパスの整合を必要とせず、生成したテキストの品質と多様性を微妙に評価できる。
論文 参考訳(メタデータ) (2024-02-16T13:53:26Z) - Improving Diversity of Demographic Representation in Large Language
Models via Collective-Critiques and Self-Voting [19.79214899011072]
本稿では,生成的大言語モデルにおける表現の多様性を形式化する。
評価データセットを提示し、人や文化軸に沿って生成された反応の多様性を測定する指標を提案する。
LLMは多様性の概念を理解し、その目標に対して自身の反応を推論し、批判することができる。
論文 参考訳(メタデータ) (2023-10-25T10:17:17Z) - Large Language Models can Contrastively Refine their Generation for Better Sentence Representation Learning [57.74233319453229]
大規模言語モデル(LLM)は画期的な技術として登場し、それらの非並列テキスト生成能力は、基本的な文表現学習タスクへの関心を喚起している。
コーパスを生成するためにLLMの処理を分解するマルチレベルコントラスト文表現学習フレームワークであるMultiCSRを提案する。
実験の結果,MultiCSRはより高度なLCMをChatGPTの性能を超えつつ,ChatGPTに適用することで最先端の成果を得られることがわかった。
論文 参考訳(メタデータ) (2023-10-17T03:21:43Z) - UniDiff: Advancing Vision-Language Models with Generative and
Discriminative Learning [86.91893533388628]
本稿では、画像テキストコントラスト学習(ITC)、テキスト条件付き画像合成学習(IS)、相互意味整合性モデリング(RSC)を統合した統合マルチモーダルモデルUniDiffを提案する。
UniDiffはマルチモーダル理解と生成タスクの両方において汎用性を示す。
論文 参考訳(メタデータ) (2023-06-01T15:39:38Z) - Exploring Diversity in Back Translation for Low-Resource Machine
Translation [85.03257601325183]
バックトランスフォーメーションは、ニューラルマシントランスフォーメーションシステムの性能を改善するために最も広く使われている手法の1つである。
近年の研究では、生成された翻訳の「多様性」を増大させることにより、この手法の有効性を高めることを目指している。
この研究は、トレーニングデータの多様性を理解し、それを語彙的多様性と構文的多様性に分割する、より微妙なフレームワークを推し進めている。
論文 参考訳(メタデータ) (2022-06-01T15:21:16Z) - Semantic Diversity in Dialogue with Natural Language Inference [19.74618235525502]
本稿では,対話生成における多様性向上に2つの重要な貢献をする。
まず、自然言語推論(NLI)を用いて、会話に対するモデル応答の集合のセマンティック多様性を測定する新しいメトリクスを提案する。
第2に,多様性閾値生成と呼ばれる新世代の手法を用いて,サンプル化された応答集合のセマンティック多様性を反復的に改善する方法を実証する。
論文 参考訳(メタデータ) (2022-05-03T13:56:32Z) - Diverse Keyphrase Generation with Neural Unlikelihood Training [6.645227801791013]
多様性の観点からシーケンス・ツー・シーケンス(S2S)キーフレーズ生成モデルについて検討した。
我々はまず、最大推定(MLE)を用いて訓練されたベースラインモデルにより生成された出力に含まれる情報冗長度について分析する。
論文 参考訳(メタデータ) (2020-10-15T11:12:26Z) - Informed Sampling for Diversity in Concept-to-Text NLG [8.883733362171034]
本稿では,言語生成モデルが確実に生成できる多様性のレベルを探索するために,Imitation Learningアプローチを提案する。
具体的には、任意のタイミングでどの単語が高品質な出力につながるかを識別するように訓練されたメタ分類器を用いて復号処理を強化する。
論文 参考訳(メタデータ) (2020-04-29T17:43:24Z) - Self-Adversarial Learning with Comparative Discrimination for Text
Generation [111.18614166615968]
本稿では,テキスト生成におけるGANの性能向上のための,新たな自己逆学習(SAL)パラダイムを提案する。
トレーニング中、SALは、現在生成された文が以前生成されたサンプルより優れていると判断されたときにジェネレータに報酬を与える。
テキスト生成ベンチマークデータセットの実験により,提案手法は品質と多様性の両方を大幅に改善することが示された。
論文 参考訳(メタデータ) (2020-01-31T07:50:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。