Sugarcane Health Monitoring With Satellite Spectroscopy and Machine Learning: A Review
- URL: http://arxiv.org/abs/2404.16844v1
- Date: Tue, 13 Feb 2024 01:12:39 GMT
- Title: Sugarcane Health Monitoring With Satellite Spectroscopy and Machine Learning: A Review
- Authors: Ethan Kane Waters, Carla Chia-Ming Chen, Mostafa Rahimi Azghadi,
- Abstract summary: This review delves into previously unexplored and under-explored areas in sugarcane health monitoring and disease/pest detection using satellite-based spectroscopy and Machine Learning (ML)
It discusses key considerations in system development, including relevant satellites, vegetation indices, ML methods, factors influencing sugarcane reflectance, optimal growth conditions, common diseases, and traditional detection methods.
- Score: 3.006016887654771
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Research into large-scale crop monitoring has flourished due to increased accessibility to satellite imagery. This review delves into previously unexplored and under-explored areas in sugarcane health monitoring and disease/pest detection using satellite-based spectroscopy and Machine Learning (ML). It discusses key considerations in system development, including relevant satellites, vegetation indices, ML methods, factors influencing sugarcane reflectance, optimal growth conditions, common diseases, and traditional detection methods. Many studies highlight how factors like crop age, soil type, viewing angle, water content, recent weather patterns, and sugarcane variety can impact spectral reflectance, affecting the accuracy of health assessments via spectroscopy. However, these variables have not been fully considered in the literature. In addition, the current literature lacks comprehensive comparisons between ML techniques and vegetation indices. We address these gaps in this review. We discuss that, while current findings suggest the potential for an ML-driven satellite spectroscopy system for monitoring sugarcane health, further research is essential. This paper offers a comprehensive analysis of previous research to aid in unlocking this potential and advancing the development of an effective sugarcane health monitoring system using satellite technology.
Related papers
- Machine Learning for Asymptomatic Ratoon Stunting Disease Detection With Freely Available Satellite Based Multispectral Imaging [3.006016887654771]
Disease detection in sugarcane is critical for effective crop management.
This study employed various machine learning techniques to detect the presence of RSD in different sugarcane varieties.
arXiv Detail & Related papers (2024-10-04T04:37:29Z) - Smoke and Mirrors in Causal Downstream Tasks [59.90654397037007]
This paper looks at the causal inference task of treatment effect estimation, where the outcome of interest is recorded in high-dimensional observations.
We compare 6 480 models fine-tuned from state-of-the-art visual backbones, and find that the sampling and modeling choices significantly affect the accuracy of the causal estimate.
Our results suggest that future benchmarks should carefully consider real downstream scientific questions, especially causal ones.
arXiv Detail & Related papers (2024-05-27T13:26:34Z) - Spectral Analysis of Marine Debris in Simulated and Observed
Sentinel-2/MSI Images using Unsupervised Classification [0.0]
This study uses Radiative Transfer Model (RTM) simulated data and data from the Multispectral Instrument (MSI) of the Sentinel-2 mission in combination with machine learning algorithms.
The results indicate that the spectral behavior of pollutants is influenced by factors such as the type of polymer and pixel coverage percentage.
These insights can guide future research in remote sensing applications for detecting marine plastic pollution.
arXiv Detail & Related papers (2023-06-26T18:46:47Z) - Evaluation of the potential of Near Infrared Hyperspectral Imaging for
monitoring the invasive brown marmorated stink bug [53.682955739083056]
The brown marmorated stink bug (BMSB), Halyomorpha halys, is an invasive insect pest of global importance that damages several crops.
The present study consists in a preliminary evaluation at the laboratory level of Near Infrared Hyperspectral Imaging (NIR-HSI) as a possible technology to detect BMSB specimens.
arXiv Detail & Related papers (2023-01-19T11:37:20Z) - Early Detection of Bark Beetle Attack Using Remote Sensing and Machine
Learning: A Review [7.715886336430544]
This review encompasses all RS systems and emphasizes ML/DL methods to investigate their strengths and weaknesses.
We parse existing literature based on multi- or hyper-spectral analyses and distill their knowledge based on: bark beetle species & attack phases, study regions, RS platforms & sensors, spectral/spatial/temporal resolutions, spectral signatures, spectral vegetation indices (SVIs)
Although DL-based methods and the random forest (RF) algorithm showed promising results, they still have limited effectiveness and high uncertainties.
arXiv Detail & Related papers (2022-10-07T21:49:26Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
This paper presents a deep learning approach to automatically recognize powdery mildew on cucumber leaves.
We focus on unsupervised deep learning techniques applied to multispectral imaging data.
We propose the use of autoencoder architectures to investigate two strategies for disease detection.
arXiv Detail & Related papers (2021-12-20T13:29:13Z) - A Novel CropdocNet for Automated Potato Late Blight Disease Detection
from the Unmanned Aerial Vehicle-based Hyperspectral Imagery [3.3283767441645478]
Late blight disease is one of the most destructive diseases in potato crop, leading to serious yield losses globally.
Current farm practices in crop disease diagnosis are based on manual visual inspection, which is costly, time consuming, subject to individual bias.
Recent advances in imaging sensors (e.g. RGB, multiple spectral and hyperspectral cameras), remote sensing and machine learning offer the opportunity to address this challenge.
arXiv Detail & Related papers (2021-07-28T11:18:48Z) - Applications of physics-informed scientific machine learning in
subsurface science: A survey [64.0476282000118]
Geosystems are geological formations altered by humans activities such as fossil energy exploration, waste disposal, geologic carbon sequestration, and renewable energy generation.
The responsible use and exploration of geosystems are thus critical to the geosystem governance, which in turn depends on the efficient monitoring, risk assessment, and decision support tools for practical implementation.
Fast advances in machine learning algorithms and novel sensing technologies in recent years have presented new opportunities for the subsurface research community to improve the efficacy and transparency of geosystem governance.
arXiv Detail & Related papers (2021-04-10T13:40:22Z) - Spatial-Phase Shallow Learning: Rethinking Face Forgery Detection in
Frequency Domain [88.7339322596758]
We present a novel Spatial-Phase Shallow Learning (SPSL) method, which combines spatial image and phase spectrum to capture the up-sampling artifacts of face forgery.
SPSL can achieve the state-of-the-art performance on cross-datasets evaluation as well as multi-class classification and obtain comparable results on single dataset evaluation.
arXiv Detail & Related papers (2021-03-02T16:45:08Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
We take advantage of all parallel developments in mechanistic modeling and satellite data availability for advanced monitoring of crop productivity.
Our model successfully estimates gross primary productivity across a variety of C3 crop types and environmental conditions even though it does not use any local information from the corresponding sites.
This highlights its potential to map crop productivity from new satellite sensors at a global scale with the help of current Earth observation cloud computing platforms.
arXiv Detail & Related papers (2020-12-07T16:23:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.