論文の概要: ThermoPore: Predicting Part Porosity Based on Thermal Images Using Deep Learning
- arxiv url: http://arxiv.org/abs/2404.16882v1
- Date: Tue, 23 Apr 2024 19:56:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-29 15:13:44.218657
- Title: ThermoPore: Predicting Part Porosity Based on Thermal Images Using Deep Learning
- Title(参考訳): ThermoPore: 深層学習を用いた熱画像に基づくポーシティの予測
- Authors: Peter Myung-Won Pak, Francis Ogoke, Andrew Polonsky, Anthony Garland, Dan S. Bolintineanu, Dan R. Moser, Michael J. Heiden, Amir Barati Farimani,
- Abstract要約: 本稿では,レーザー粉体融合法で作製した試料中の擬似ポロシティの定量化と局在化のための深層学習手法を提案する。
私たちの目標は、ビルド中に取得した熱画像に基づいて、パーツのリアルタイムポロシティマップを構築することです。
- 参考スコア(独自算出の注目度): 4.498477459271036
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a deep learning approach for quantifying and localizing ex-situ porosity within Laser Powder Bed Fusion fabricated samples utilizing in-situ thermal image monitoring data. Our goal is to build the real time porosity map of parts based on thermal images acquired during the build. The quantification task builds upon the established Convolutional Neural Network model architecture to predict pore count and the localization task leverages the spatial and temporal attention mechanisms of the novel Video Vision Transformer model to indicate areas of expected porosity. Our model for porosity quantification achieved a $R^2$ score of 0.57 and our model for porosity localization produced an average IoU score of 0.32 and a maximum of 1.0. This work is setting the foundations of part porosity "Digital Twins" based on additive manufacturing monitoring data and can be applied downstream to reduce time-intensive post-inspection and testing activities during part qualification and certification. In addition, we seek to accelerate the acquisition of crucial insights normally only available through ex-situ part evaluation by means of machine learning analysis of in-situ process monitoring data.
- Abstract(参考訳): In-situ thermal image monitoring data を用いて,レーザー粉体融合法で作製した試料中の擬似ポロシティの定量化と局在化のための深層学習手法を提案する。
私たちの目標は、ビルド中に取得した熱画像に基づいて、パーツのリアルタイムポロシティマップを構築することです。
量子化タスクは、細孔数を予測するために確立された畳み込みニューラルネットワークモデルアーキテクチャに基づいて構築され、ローカライゼーションタスクは、新しいビデオビジョントランスフォーマーモデルの空間的および時間的注意機構を利用して、期待されるポロシティの領域を示す。
ポロシティ定量化モデルではR^2$スコアが0.57、ポロシティ局在化モデルでは平均IoUスコアが0.32、最大1.0が得られた。
本研究は, 付加的製造監視データに基づいて, パートポーシティ"デジタルツイン"の基礎を設定し, パート資格・認定期間中の時間集中検査・テスト活動を減らすために下流に応用することができる。
さらに,プロセス監視データの機械学習解析により,通常利用可能な重要な洞察の獲得を,前部評価によって促進することを目指す。
関連論文リスト
- Binocular Model: A deep learning solution for online melt pool temperature analysis using dual-wavelength Imaging Pyrometry [0.0]
金属添加物製造(AM)において, メルトプール(MP)の温度監視は, 部品品質, プロセス安定性, 欠陥防止, プロセス全体の最適化の確保に不可欠である。
従来の手法は収束が遅く、データを実行可能な洞察に変換するために広範囲な手作業を必要とする。
本稿では,手作業によるデータ処理依存を減らすことを目的とした人工知能(AI)ベースのソリューションを提案する。
論文 参考訳(メタデータ) (2024-08-20T18:26:09Z) - Estimating Pore Location of PBF-LB/M Processes with Segmentation Models [0.0]
本稿では,ガウス核密度推定を用いて単一層内における位置を推定する多孔性局所化手法を提案する。
これにより、セグメンテーションモデルは、その場監視データと細孔発生の導出確率分布との相関を学習することができる。
以上の結果から,本手法は最小限のデータ前処理を必要とする細孔の正確な局所化を可能にすると結論付けた。
論文 参考訳(メタデータ) (2024-08-05T14:31:09Z) - Multi-scale Restoration of Missing Data in Optical Time-series Images with Masked Spatial-Temporal Attention Network [0.6675733925327885]
リモートセンシング画像に欠落した値を出力する既存の方法は、補助情報を完全に活用できない。
本稿では,時系列リモートセンシング画像の再構成のためのMS2という,深層学習に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2024-06-19T09:05:05Z) - Evaluation of Key Spatiotemporal Learners for Print Track Anomaly
Classification Using Melt Pool Image Streams [1.83192584562129]
本稿では,メルトプール画像の分類に適応可能な,先進的な深層学習モデルについて紹介する。
空間的ストリームと時間的ストリームと、繰り返し空間的ネットワークと、分解された3次元畳み込みニューラルネットワークから構成される2つのストリームネットワークについて検討する。
実世界のプロセスシナリオに根ざしたデータテンポラリ手法を用いて, 溶融プール画像データの摂動に曝露した場合の一般化能力について検討した。
論文 参考訳(メタデータ) (2023-08-28T19:31:53Z) - SpaDen : Sparse and Dense Keypoint Estimation for Real-World Chart
Understanding [9.264156931444331]
本稿では,グラフデータ抽出のためのボトムアップ手法を提案する。
我々は、プロット領域内のコンポーネントを再構成するキーポイント(KP)を検出することを学ぶ。
実験の結果,実世界のグラフデータ抽出の課題に対して,広範囲な評価が得られた。
論文 参考訳(メタデータ) (2023-08-03T18:03:42Z) - Learning Structure-Guided Diffusion Model for 2D Human Pose Estimation [71.24808323646167]
ニューラルネットワークを用いてキーポイントのヒートマップを学習するための新しいスキームである textbfDiffusionPose を提案する。
トレーニング中、キーポイントはノイズを加えることでランダム分布に拡散され、拡散モデルはノイズ付きヒートマップから地中構造熱マップを復元する。
実験では、広く使用されているCOCO、CrowdPose、AI Challengeデータセット上で1.6、1.2、1.2mAPの改善による、私たちのスキームの長所が示されている。
論文 参考訳(メタデータ) (2023-06-29T16:24:32Z) - Neural network enhanced measurement efficiency for molecular
groundstates [63.36515347329037]
いくつかの分子量子ハミルトニアンの複雑な基底状態波動関数を学習するために、一般的なニューラルネットワークモデルを適用する。
ニューラルネットワークモデルを使用することで、単一コピー計測結果だけで観測対象を再構築するよりも堅牢な改善が得られます。
論文 参考訳(メタデータ) (2022-06-30T17:45:05Z) - Surface Warping Incorporating Machine Learning Assisted Domain
Likelihood Estimation: A New Paradigm in Mine Geology Modelling and
Automation [68.8204255655161]
新たに取得した破砕孔データによって課される地球化学的および空間的制約に基づいて, モデル表面を再構成するバイーシアンワープ法が提案されている。
本稿では,このワーピングフレームワークに機械学習を組み込むことにより,可能性の一般化を図る。
その基礎は、p(g|c) が p(y(c)|g と似た役割を果たすような地質領域の確率のベイズ計算によって構成される。
論文 参考訳(メタデータ) (2021-02-15T10:37:52Z) - Semi-supervised Facial Action Unit Intensity Estimation with Contrastive
Learning [54.90704746573636]
提案手法では,手動でキーフレームを選択する必要はなく,2%の注釈付きフレームで最先端の結果を生成できる。
提案手法は, ランダムに選択したデータに対してわずか2%の費用で作業した場合に, 既存の手法よりも優れていることを実験的に検証した。
論文 参考訳(メタデータ) (2020-11-03T17:35:57Z) - Object-based Illumination Estimation with Rendering-aware Neural
Networks [56.01734918693844]
個々の物体とその局所画像領域のRGBD外観から高速環境光推定手法を提案する。
推定照明により、仮想オブジェクトは実際のシーンと一貫性のあるシェーディングでARシナリオでレンダリングできる。
論文 参考訳(メタデータ) (2020-08-06T08:23:19Z) - A Generative Learning Approach for Spatio-temporal Modeling in Connected
Vehicular Network [55.852401381113786]
本稿では,コネクテッドカーの無線アクセス遅延を実現するための総合的時間品質フレームワークであるLaMI(Latency Model Inpainting)を提案する。
LaMIはイメージインペイントと合成のアイデアを採用し、2段階の手順で欠落したレイテンシサンプルを再構築することができる。
特に、パッチ方式のアプローチを用いて各地域で収集されたサンプル間の空間的相関を初めて発見し、その後、原点および高度に相関したサンプルをバラエナオートコーダ(VAE)に供給する。
論文 参考訳(メタデータ) (2020-03-16T03:43:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。