論文の概要: Review of Data-centric Time Series Analysis from Sample, Feature, and Period
- arxiv url: http://arxiv.org/abs/2404.16886v1
- Date: Wed, 24 Apr 2024 00:34:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-29 15:03:56.078292
- Title: Review of Data-centric Time Series Analysis from Sample, Feature, and Period
- Title(参考訳): サンプル, 特徴, 期間のデータ中心時系列分析の概観
- Authors: Chenxi Sun, Hongyan Li, Yaliang Li, Shenda Hong,
- Abstract要約: 優れた時系列データセットは、モデルの正確性、堅牢性、収束性に有利である。
データ中心AIの出現は、モデルの改良からデータ品質の優先順位付けへの展望の変化を表している。
時系列分析において,様々なデータ中心の手法を体系的に検討し,幅広い研究トピックを取り上げている。
- 参考スコア(独自算出の注目度): 37.33135447969283
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data is essential to performing time series analysis utilizing machine learning approaches, whether for classic models or today's large language models. A good time-series dataset is advantageous for the model's accuracy, robustness, and convergence, as well as task outcomes and costs. The emergence of data-centric AI represents a shift in the landscape from model refinement to prioritizing data quality. Even though time-series data processing methods frequently come up in a wide range of research fields, it hasn't been well investigated as a specific topic. To fill the gap, in this paper, we systematically review different data-centric methods in time series analysis, covering a wide range of research topics. Based on the time-series data characteristics at sample, feature, and period, we propose a taxonomy for the reviewed data selection methods. In addition to discussing and summarizing their characteristics, benefits, and drawbacks targeting time-series data, we also introduce the challenges and opportunities by proposing recommendations, open problems, and possible research topics.
- Abstract(参考訳): データは、古典的モデルであれ、今日の大規模言語モデルであれ、機械学習アプローチを利用した時系列分析を実行する上で不可欠である。
優れた時系列データセットは、タスクの結果とコストだけでなく、モデルの正確性、堅牢性、収束性にも有利です。
データ中心AIの出現は、モデルの改良からデータ品質の優先順位付けへの展望の変化を表している。
時系列データ処理手法は、広範囲の研究分野に頻繁に現れるが、特定のトピックとしてはあまり研究されていない。
このギャップを埋めるために、本稿では、時系列分析における様々なデータ中心の手法を体系的にレビューし、幅広い研究トピックを取り上げる。
本稿では,サンプル,特徴,期間における時系列データの特徴に基づいて,レビューしたデータ選択手法の分類法を提案する。
時系列データを対象とした特徴,利益,欠点を論じ,要約することに加えて,推奨事項やオープン問題,可能な研究トピックを提案することで,課題や機会も紹介する。
関連論文リスト
- Can time series forecasting be automated? A benchmark and analysis [4.19475889117731]
時系列予測は、金融、医療、気象など様々な分野において重要な役割を担っている。
与えられたデータセットに対して最適な予測方法を選択するタスクは、データパターンや特徴の多様性による複雑なタスクである。
本研究では,幅広いデータセットを対象とした時系列予測手法の評価とランキングのための総合ベンチマークを提案する。
論文 参考訳(メタデータ) (2024-07-23T12:54:06Z) - Deep Time Series Models: A Comprehensive Survey and Benchmark [74.28364194333447]
時系列データは、現実世界のシナリオにおいて非常に重要である。
近年、時系列コミュニティで顕著なブレークスルーが見られた。
多様な分析タスクのためのディープ時系列モデルの公正なベンチマークとして、時系列ライブラリ(TSLib)をリリースします。
論文 参考訳(メタデータ) (2024-07-18T08:31:55Z) - UniCL: A Universal Contrastive Learning Framework for Large Time Series Models [18.005358506435847]
時系列分析は、金融から医療まで、さまざまな重要なアプリケーションにおいて重要な役割を果たす。
従来の教師付き学習手法は、まず各タスクにおける時系列データの広範なラベルを注釈付けする。
本稿では,時系列基礎モデルの事前学習を目的とした,普遍的でスケーラブルなコントラスト学習フレームワークUniCLを紹介する。
論文 参考訳(メタデータ) (2024-05-17T07:47:11Z) - A Survey on Diffusion Models for Time Series and Spatio-Temporal Data [92.1255811066468]
時系列およびS時間データにおける拡散モデルの使用について概観し、それらをモデル、タスクタイプ、データモダリティ、実用的なアプリケーションドメインで分類する。
我々は拡散モデルを無条件型と条件付き型に分類し、時系列とS時間データを別々に議論する。
本調査は,医療,レコメンデーション,気候,エネルギー,オーディオ,交通など,さまざまな分野の応用を幅広くカバーしている。
論文 参考訳(メタデータ) (2024-04-29T17:19:40Z) - A Survey on Data Selection for Language Models [148.300726396877]
データ選択方法は、トレーニングデータセットに含まれるデータポイントを決定することを目的としている。
ディープラーニングは、主に実証的な証拠によって駆動され、大規模なデータに対する実験は高価である。
広範なデータ選択研究のリソースを持つ組織はほとんどない。
論文 参考訳(メタデータ) (2024-02-26T18:54:35Z) - Large Models for Time Series and Spatio-Temporal Data: A Survey and
Outlook [95.32949323258251]
時系列データ、特に時系列データと時間時間データは、現実世界のアプリケーションで広く使われている。
大規模言語やその他の基礎モデルの最近の進歩は、時系列データマイニングや時間データマイニングでの使用の増加に拍車を掛けている。
論文 参考訳(メタデータ) (2023-10-16T09:06:00Z) - PIETS: Parallelised Irregularity Encoders for Forecasting with
Heterogeneous Time-Series [5.911865723926626]
マルチソースデータセットの不均一性と不規則性は時系列解析において重要な課題となる。
本研究では、異種時系列をモデル化するための新しいアーキテクチャ、PIETSを設計する。
PIETSは異種時間データを効果的にモデル化し、予測タスクにおける他の最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-09-30T20:01:19Z) - Deep Time Series Models for Scarce Data [8.673181404172963]
時系列データは多くの領域で爆発的な速度で成長し、時系列モデリング研究の急増を刺激している。
データ希少性は、膨大なデータ分析の問題で発生する普遍的な問題です。
論文 参考訳(メタデータ) (2021-03-16T22:16:54Z) - Causal Inference for Time series Analysis: Problems, Methods and
Evaluation [11.925605453634638]
時系列データ(英: Time series data)は、医学や金融などの分野によって生成される時系列観測の集合である。
本稿では,時系列データに対する治療効果推定と因果探索という2つの因果推論タスクに着目した。
論文 参考訳(メタデータ) (2021-02-11T03:26:11Z) - Learning summary features of time series for likelihood free inference [93.08098361687722]
時系列データから要約機能を自動的に学習するためのデータ駆動型戦略を提案する。
以上の結果から,データから要約的特徴を学習することで,手作りの値に基づいてLFI手法よりも優れる可能性が示唆された。
論文 参考訳(メタデータ) (2020-12-04T19:21:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。