論文の概要: Are Large Language Models Useful for Time Series Data Analysis?
- arxiv url: http://arxiv.org/abs/2412.12219v1
- Date: Mon, 16 Dec 2024 02:47:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-18 17:09:38.404766
- Title: Are Large Language Models Useful for Time Series Data Analysis?
- Title(参考訳): 大規模言語モデルは時系列データ分析に有用か?
- Authors: Francis Tang, Ying Ding,
- Abstract要約: 時系列データは、医療、エネルギー、金融といった様々な分野において重要な役割を果たす。
本研究では,大規模言語モデル(LLM)が時系列データ解析に有効かどうかを検討する。
- 参考スコア(独自算出の注目度): 3.44393516559102
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time series data plays a critical role across diverse domains such as healthcare, energy, and finance, where tasks like classification, anomaly detection, and forecasting are essential for informed decision-making. Recently, large language models (LLMs) have gained prominence for their ability to handle complex data and extract meaningful insights. This study investigates whether LLMs are effective for time series data analysis by comparing their performance with non-LLM-based approaches across three tasks: classification, anomaly detection, and forecasting. Through a series of experiments using GPT4TS and autoregressive models, we evaluate their performance on benchmark datasets and assess their accuracy, precision, and ability to generalize. Our findings indicate that while LLM-based methods excel in specific tasks like anomaly detection, their benefits are less pronounced in others, such as forecasting, where simpler models sometimes perform comparably or better. This research highlights the role of LLMs in time series analysis and lays the groundwork for future studies to systematically explore their applications and limitations in handling temporal data.
- Abstract(参考訳): 時系列データは、分類、異常検出、予測といったタスクが情報的意思決定に不可欠である医療、エネルギー、財務といった様々な領域において重要な役割を果たす。
近年,大規模言語モデル (LLM) は複雑なデータを扱う能力と意味のある洞察を抽出できることで注目されている。
本研究では, LLMが時系列データ解析に有効であるかどうかを, 分類, 異常検出, 予測の3つのタスクにまたがる非LLM手法との比較により検討した。
GPT4TSと自己回帰モデルを用いた一連の実験を通じて、ベンチマークデータセットの性能を評価し、それらの精度、精度、一般化能力を評価する。
以上の結果から,LSM法は異常検出などの特定のタスクに優れるが,より単純なモデルが相補的あるいは良好に機能する予測など,他の手法ではそのメリットが顕著でないことが示唆された。
本研究は,時系列解析におけるLLMの役割を強調し,その応用と時間的データ処理の限界を体系的に探求する今後の研究の基盤となる。
関連論文リスト
- Efficient Model Selection for Time Series Forecasting via LLMs [52.31535714387368]
本稿では,Large Language Models (LLM) をモデル選択の軽量な代替手段として活用することを提案する。
提案手法は, LLMの固有知識と推論能力を活用することで, 明示的な性能行列の必要性を解消する。
論文 参考訳(メタデータ) (2025-04-02T20:33:27Z) - Empowering Time Series Analysis with Synthetic Data: A Survey and Outlook in the Era of Foundation Models [104.17057231661371]
時系列解析は複雑なシステムの力学を理解するために重要である。
基本モデルの最近の進歩はタスク非依存の時系列基礎モデル (TSFM) と大規模言語モデルベース時系列モデル (TSLLM) につながっている。
彼らの成功は、規制、多様性、品質、量制約のために構築が困難である、大規模で多様で高品質なデータセットに依存する。
本調査では,TSFMとTLLLMの合成データの総合的なレビュー,データ生成戦略の分析,モデル事前学習におけるそれらの役割,微調整,評価,今後の研究方向性の特定について述べる。
論文 参考訳(メタデータ) (2025-03-14T13:53:46Z) - LLM-PS: Empowering Large Language Models for Time Series Forecasting with Temporal Patterns and Semantics [56.99021951927683]
Time Series Forecasting (TSF) は、金融計画や健康モニタリングなど、多くの現実世界のドメインにおいて重要である。
既存のLarge Language Models (LLM) は通常、時系列データ固有の特性を無視するため、非最適に実行する。
時系列データから基本的なtextitPatterns と有意義な textitSemantics を学習し,TLF のための LLM-PS を提案する。
論文 参考訳(メタデータ) (2025-03-12T11:45:11Z) - Large Language Models are Few-shot Multivariate Time Series Classifiers [23.045734479292356]
大規模言語モデル (LLM) は時系列解析に広く応用されている。
しかし、数発の分類(すなわち重要な訓練シナリオ)におけるそれらの実用性は過小評価されている。
データ不足を克服するために,LLMの学習済み知識を幅広く活用することを目的としている。
論文 参考訳(メタデータ) (2025-01-30T03:59:59Z) - The Performance of the LSTM-based Code Generated by Large Language Models (LLMs) in Forecasting Time Series Data [0.3749861135832072]
本稿では,ChatGPT, PaLM, LLama, FalconなどのLLMの時系列データ解析のためのディープラーニングモデルの生成における性能について検討し, 比較する。
その結果は、生成的AIを活用して、許容できる良さで優れた予測モデルを作成したいデータアナリストや実践者にとって有益である。
論文 参考訳(メタデータ) (2024-11-27T20:18:36Z) - Using Large Language Models for Expert Prior Elicitation in Predictive Modelling [53.54623137152208]
本研究では,大規模言語モデル (LLM) を用いて予測モデルの事前分布を推定する手法を提案する。
その結果,LLMによる事前パラメータ分布は,低データ設定における非形式的先行よりも予測誤差を著しく低減することがわかった。
事前の推論も一貫して優れており、低コストでテキスト内学習よりも信頼性が高いことが証明されている。
論文 参考訳(メタデータ) (2024-11-26T10:13:39Z) - Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
コンテキスト・イズ・キー (Context is Key) (CiK) は、時系列予測ベンチマークであり、様々な種類のテキストコンテキストと数値データをペアリングする。
我々は,統計モデル,時系列基礎モデル,LLMに基づく予測モデルなど,さまざまなアプローチを評価する。
実験では、文脈情報の導入の重要性を強調し、LLMに基づく予測モデルを用いた場合の驚くべき性能を示すとともに、それらの重要な欠点を明らかにした。
論文 参考訳(メタデータ) (2024-10-24T17:56:08Z) - Revisited Large Language Model for Time Series Analysis through Modality Alignment [16.147350486106777]
大規模言語モデルは、センサデータ分析のような多くの重要なWebアプリケーションにおいて、印象的なパフォーマンスを示している。
本研究では,予測,分類,計算,異常検出など,主要な時系列タスクにLLMを適用することの有効性を評価する。
この結果から,LLMはこれらのコア時系列タスクに対して最小限のアドバンテージを提供し,データの時間構造を歪めてしまう可能性があることがわかった。
論文 参考訳(メタデータ) (2024-10-16T07:47:31Z) - An Evaluation of Standard Statistical Models and LLMs on Time Series Forecasting [16.583730806230644]
本研究では,大言語モデルが時系列予測の文脈で直面する重要な課題を明らかにする。
実験結果から、大規模な言語モデルは特定のデータセットのゼロショット予測において良好に機能するが、様々な時系列データや従来の信号に直面すると、予測精度は顕著に低下することが示された。
論文 参考訳(メタデータ) (2024-08-09T05:13:03Z) - A Comprehensive Evaluation of Large Language Models on Temporal Event Forecasting [45.0261082985087]
時間的事象予測のための大規模言語モデル(LLM)を総合的に評価する。
LLMの入力に生テキストを直接統合しても、ゼロショット補間性能は向上しないことがわかった。
対照的に、特定の複雑なイベントや微調整LDMに生テキストを組み込むことで、性能が大幅に向上する。
論文 参考訳(メタデータ) (2024-07-16T11:58:54Z) - Review of Data-centric Time Series Analysis from Sample, Feature, and Period [37.33135447969283]
優れた時系列データセットは、モデルの正確性、堅牢性、収束性に有利である。
データ中心AIの出現は、モデルの改良からデータ品質の優先順位付けへの展望の変化を表している。
時系列分析において,様々なデータ中心の手法を体系的に検討し,幅広い研究トピックを取り上げている。
論文 参考訳(メタデータ) (2024-04-24T00:34:44Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
時系列予測は多くの実世界の力学系において重要な意味を持つ。
時系列予測のための大規模言語モデルを再利用するための再プログラミングフレームワークであるTime-LLMを提案する。
Time-LLMは、最先端の特殊な予測モデルよりも優れた、強力な時系列学習者である。
論文 参考訳(メタデータ) (2023-10-03T01:31:25Z) - Learning summary features of time series for likelihood free inference [93.08098361687722]
時系列データから要約機能を自動的に学習するためのデータ駆動型戦略を提案する。
以上の結果から,データから要約的特徴を学習することで,手作りの値に基づいてLFI手法よりも優れる可能性が示唆された。
論文 参考訳(メタデータ) (2020-12-04T19:21:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。