論文の概要: Samsung Research China-Beijing at SemEval-2024 Task 3: A multi-stage framework for Emotion-Cause Pair Extraction in Conversations
- arxiv url: http://arxiv.org/abs/2404.16905v1
- Date: Thu, 25 Apr 2024 11:52:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-29 14:54:11.700659
- Title: Samsung Research China-Beijing at SemEval-2024 Task 3: A multi-stage framework for Emotion-Cause Pair Extraction in Conversations
- Title(参考訳): Samsung Research China-Beijing at SemEval-2024 Task 3: A multi-stage framework for Emotion-Cause Pair extract in Conversations
- Authors: Shen Zhang, Haojie Zhang, Jing Zhang, Xudong Zhang, Yimeng Zhuang, Jinting Wu,
- Abstract要約: 人間とコンピュータの相互作用においては、エージェントは感情を理解することで人間に反応することが不可欠である。
会話におけるマルチモーダル感情因果ペア抽出というタスクは、感情を認識し、因果表現を識別する役割を担っている。
本研究では,感情を生成するための多段階フレームワークを提案し,対象感情から感情因果対を抽出する。
- 参考スコア(独自算出の注目度): 12.095837596104552
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In human-computer interaction, it is crucial for agents to respond to human by understanding their emotions. Unraveling the causes of emotions is more challenging. A new task named Multimodal Emotion-Cause Pair Extraction in Conversations is responsible for recognizing emotion and identifying causal expressions. In this study, we propose a multi-stage framework to generate emotion and extract the emotion causal pairs given the target emotion. In the first stage, Llama-2-based InstructERC is utilized to extract the emotion category of each utterance in a conversation. After emotion recognition, a two-stream attention model is employed to extract the emotion causal pairs given the target emotion for subtask 2 while MuTEC is employed to extract causal span for subtask 1. Our approach achieved first place for both of the two subtasks in the competition.
- Abstract(参考訳): 人間とコンピュータの相互作用においては、エージェントは感情を理解することで人間に反応することが不可欠である。
感情の原因を明らかにすることはもっと難しい。
会話におけるマルチモーダル感情因果対抽出と呼ばれる新しいタスクは、感情を認識し、因果表現を識別する役割を担っている。
本研究では,感情を生成するための多段階フレームワークを提案し,対象感情から感情因果対を抽出する。
第1段階では、Llama-2ベースのインストラクタCを用いて、会話中の各発話の感情カテゴリを抽出する。
感情認識後、サブタスク2の目標感情が与えられた感情因果対を抽出するために2ストリームアテンションモデルを用い、サブタスク1の因果対を抽出するために MuTEC を用いる。
当社のアプローチは,2つのサブタスクのどちらにおいても,この2つのサブタスクで第1位を獲得しました。
関連論文リスト
- Think out Loud: Emotion Deducing Explanation in Dialogues [57.90554323226896]
対話における感情推論(Emotion Deducing Explanation in Dialogues)を提案する。
EDENは感情と原因を明確な考え方で認識する。
大規模言語モデル(LLM)が感情や原因をよりよく認識するのに役立ちます。
論文 参考訳(メタデータ) (2024-06-07T08:58:29Z) - SemEval-2024 Task 3: Multimodal Emotion Cause Analysis in Conversations [53.60993109543582]
SemEval-2024 Task 3 "Multimodal Emotion Cause Analysis in Conversations" は、会話からすべての感情とそれに対応する原因を抽出することを目的としている。
異なるモダリティ設定の下では、2つのサブタスクから構成される: 会話におけるテキスト感情因果ペア抽出(TECPE)と会話におけるマルチモーダル感情因果ペア抽出(MECPE)である。
本稿では,タスク,データセット,評価設定について紹介し,トップチームのシステムを要約し,参加者の知見について議論する。
論文 参考訳(メタデータ) (2024-05-19T09:59:00Z) - ECR-Chain: Advancing Generative Language Models to Better Emotion-Cause Reasoners through Reasoning Chains [61.50113532215864]
CEE(Causal Emotion Entailment)は、ターゲット発話で表現される感情を刺激する会話における因果発話を特定することを目的としている。
CEEにおける現在の研究は、主に会話のセマンティックな相互作用と感情的な相互作用をモデル化することに焦点を当てている。
本研究では,会話中の感情表現から刺激を推測するために,ステップバイステップの推論手法である感情・因果関係(ECR-Chain)を導入する。
論文 参考訳(メタデータ) (2024-05-17T15:45:08Z) - CauESC: A Causal Aware Model for Emotional Support Conversation [79.4451588204647]
既存のアプローチは、苦痛の感情の原因を無視します。
彼らは、話者間の相互作用における感情的ダイナミクスよりも、探究者自身の精神状態に焦点を当てている。
本稿では、まず、苦痛の感情要因と、その原因によって引き起こされる感情効果を認識する新しいフレームワークCauESCを提案する。
論文 参考訳(メタデータ) (2024-01-31T11:30:24Z) - Where are We in Event-centric Emotion Analysis? Bridging Emotion Role
Labeling and Appraisal-based Approaches [10.736626320566707]
テキストにおける感情分析という用語は、様々な自然言語処理タスクを仮定する。
感情と出来事は2つの方法で関連していると我々は主張する。
我々は,NLPモデルに心理的評価理論を組み込んで事象を解釈する方法について議論する。
論文 参考訳(メタデータ) (2023-09-05T09:56:29Z) - Speech Synthesis with Mixed Emotions [77.05097999561298]
異なる感情の音声サンプル間の相対的な差を測定する新しい定式化を提案する。
次に、私たちの定式化を、シーケンスからシーケンスまでの感情的なテキストから音声へのフレームワークに組み込む。
実行時に、感情属性ベクトルを手動で定義し、所望の感情混合を生成するためにモデルを制御する。
論文 参考訳(メタデータ) (2022-08-11T15:45:58Z) - Multimodal Emotion-Cause Pair Extraction in Conversations [23.95461291718006]
会話におけるマルチモーダル感情因果ペア抽出というタスクを導入する。
我々は、テキスト、音声、ビデオに反映された会話から、感情とその関連要因を共同で抽出することを目指している。
予備実験の結果は、会話における感情と原因の両方を発見するためのマルチモーダル情報融合の可能性を示している。
論文 参考訳(メタデータ) (2021-10-15T11:30:24Z) - Emotion Recognition from Multiple Modalities: Fundamentals and
Methodologies [106.62835060095532]
マルチモーダル感情認識(MER)のいくつかの重要な側面について論じる。
まず、広く使われている感情表現モデルと感情モダリティの簡単な紹介から始める。
次に、既存の感情アノテーション戦略とそれに対応する計算タスクを要約する。
最後に,実世界のアプリケーションについて概説し,今後の方向性について論じる。
論文 参考訳(メタデータ) (2021-08-18T21:55:20Z) - Multi-Task Learning and Adapted Knowledge Models for Emotion-Cause
Extraction [18.68808042388714]
感情認識と感情原因検出の両方に共同で取り組むソリューションを提案する。
暗黙的に表現された感情を理解する上で,常識的知識が重要な役割を担っていることを考慮し,新しい手法を提案する。
共通センス推論とマルチタスクフレームワークを含む場合,両タスクのパフォーマンス改善を示す。
論文 参考訳(メタデータ) (2021-06-17T20:11:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。