論文の概要: Closing the gap: Optimizing Guidance and Control Networks through Neural ODEs
- arxiv url: http://arxiv.org/abs/2404.16908v1
- Date: Thu, 25 Apr 2024 13:14:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-29 14:54:11.636304
- Title: Closing the gap: Optimizing Guidance and Control Networks through Neural ODEs
- Title(参考訳): ギャップを埋める:ニューラルネットワークによるガイダンスと制御ネットワークの最適化
- Authors: Sebastien Origer, Dario Izzo,
- Abstract要約: 我々は、時間-最適移動と質量-最適着陸の最適制御ポリシーを表現するためにネットワークを訓練する。
軌道移動では、目標への最終誤差は1つの軌道で99%、500軌道で70%減少する。
このステップにより、G&CNETの精度が大幅に向上し、運用上の信頼性が向上する。
- 参考スコア(独自算出の注目度): 5.472114129137035
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We improve the accuracy of Guidance & Control Networks (G&CNETs), trained to represent the optimal control policies of a time-optimal transfer and a mass-optimal landing, respectively. In both cases we leverage the dynamics of the spacecraft, described by Ordinary Differential Equations which incorporate a neural network on their right-hand side (Neural ODEs). Since the neural dynamics is differentiable, the ODEs sensitivities to the network parameters can be computed using the variational equations, thereby allowing to update the G&CNET parameters based on the observed dynamics. We start with a straightforward regression task, training the G&CNETs on datasets of optimal trajectories using behavioural cloning. These networks are then refined using the Neural ODE sensitivities by minimizing the error between the final states and the target states. We demonstrate that for the orbital transfer, the final error to the target can be reduced by 99% on a single trajectory and by 70% on a batch of 500 trajectories. For the landing problem the reduction in error is around 98-99% (position) and 40-44% (velocity). This step significantly enhances the accuracy of G&CNETs, which instills greater confidence in their reliability for operational use. We also compare our results to the popular Dataset Aggregation method (DaGGER) and allude to the strengths and weaknesses of both methods.
- Abstract(参考訳): 我々は,G&CNET(Guidance & Control Networks, G&CNETs)の精度を改善し, 時間-最適移動と質量-最適着陸の最適制御ポリシーを表現するように訓練した。
どちらの場合も、右辺にニューラルネットワークを組み込んだ通常の微分方程式(Neural ODE)によって説明される宇宙船の力学を利用する。
ニューラルダイナミクスは微分可能であるため、ネットワークパラメータに対するODEの感度は変動方程式を用いて計算することができ、観測されたダイナミクスに基づいてG&CNETパラメータを更新することができる。
まず、行動クローンを用いて最適な軌道のデータセット上でG&CNETをトレーニングする。
これらのネットワークは、最終状態と目標状態の誤差を最小限に抑え、ニューラルODE感度を用いて洗練される。
軌道伝達において、目標への最終誤差は1つの軌道上で99%、500の軌道上で70%減少することを示した。
着陸問題では、誤差の減少は約98-99%(位置)と40-44%(速度)である。
このステップにより、G&CNETの精度が大幅に向上し、運用上の信頼性が向上する。
また,この結果とDAGGER (Dataset Aggregation Method) を比較し,両手法の長所と短所について述べる。
関連論文リスト
- Just How Flexible are Neural Networks in Practice? [89.80474583606242]
ニューラルネットワークは、パラメータを持つ少なくとも多くのサンプルを含むトレーニングセットに適合できると広く信じられている。
しかし実際には、勾配や正規化子など、柔軟性を制限したトレーニング手順によるソリューションしか見つからない。
論文 参考訳(メタデータ) (2024-06-17T12:24:45Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Adaptive Self-supervision Algorithms for Physics-informed Neural
Networks [59.822151945132525]
物理情報ニューラルネットワーク(PINN)は、損失関数のソフト制約として問題領域からの物理的知識を取り入れている。
これらのモデルの訓練性に及ぼす座標点の位置の影響について検討した。
モデルがより高い誤りを犯している領域に対して、より多くのコロケーションポイントを段階的に割り当てる適応的コロケーション方式を提案する。
論文 参考訳(メタデータ) (2022-07-08T18:17:06Z) - Boost Neural Networks by Checkpoints [9.411567653599358]
本稿では,ディープニューラルネットワーク(DNN)のチェックポイントをアンサンブルする新しい手法を提案する。
同じトレーニング予算で,Cifar-100では4.16%,Tiny-ImageNetでは6.96%,ResNet-110アーキテクチャでは6.96%の誤差を達成した。
論文 参考訳(メタデータ) (2021-10-03T09:14:15Z) - Exploiting Adam-like Optimization Algorithms to Improve the Performance
of Convolutional Neural Networks [82.61182037130405]
勾配降下(SGD)は深いネットワークを訓練するための主要なアプローチです。
本研究では,現在と過去の勾配の違いに基づいて,Adamに基づく変分を比較する。
resnet50を勾配降下訓練したネットワークのアンサンブルと融合実験を行った。
論文 参考訳(メタデータ) (2021-03-26T18:55:08Z) - Learning Neural Network Subspaces [74.44457651546728]
近年の観測は,ニューラルネットワーク最適化の展望の理解を深めている。
1つのモデルのトレーニングと同じ計算コストで、高精度ニューラルネットワークの線、曲線、単純軸を学習します。
1つのモデルのトレーニングと同じ計算コストで、高精度ニューラルネットワークの線、曲線、単純軸を学習します。
論文 参考訳(メタデータ) (2021-02-20T23:26:58Z) - Towards Robust Neural Networks via Close-loop Control [12.71446168207573]
深層ニューラルネットワークは、ブラックボックスの性質のため、様々な摂動に弱い。
近年の研究では、入力データが知覚不可能な量で摂動しても、ディープニューラルネットワークがデータを誤分類できることが示されている。
論文 参考訳(メタデータ) (2021-02-03T03:50:35Z) - A Dynamical View on Optimization Algorithms of Overparameterized Neural
Networks [23.038631072178735]
我々は、一般的に使用される最適化アルゴリズムの幅広いクラスについて考察する。
その結果、ニューラルネットワークの収束挙動を利用することができる。
このアプローチは他の最適化アルゴリズムやネットワーク理論にも拡張できると考えています。
論文 参考訳(メタデータ) (2020-10-25T17:10:22Z) - Persistent Neurons [4.061135251278187]
本稿では,学習課題を最適化するトラジェクトリベースの戦略を提案する。
永続ニューロンは、決定論的誤差項によって個々の更新が破損する勾配情報バイアスを持つ方法とみなすことができる。
完全かつ部分的なパーシステンスモデルの評価を行い、NN構造における性能向上に有効であることを示す。
論文 参考訳(メタデータ) (2020-07-02T22:36:49Z) - Calibrating Deep Neural Networks using Focal Loss [77.92765139898906]
ミススキャリブレーション(Miscalibration)は、モデルの信頼性と正しさのミスマッチである。
焦点損失は、既に十分に校正されたモデルを学ぶことができることを示す。
ほぼすべてのケースにおいて精度を損なうことなく,最先端のキャリブレーションを達成できることを示す。
論文 参考訳(メタデータ) (2020-02-21T17:35:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。