論文の概要: A Short Survey of Human Mobility Prediction in Epidemic Modeling from Transformers to LLMs
- arxiv url: http://arxiv.org/abs/2404.16921v1
- Date: Thu, 25 Apr 2024 17:52:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-29 14:54:11.612739
- Title: A Short Survey of Human Mobility Prediction in Epidemic Modeling from Transformers to LLMs
- Title(参考訳): 変圧器からLLMへのエピデミックモデリングにおける人体移動予測の短期的調査
- Authors: Christian N. Mayemba, D'Jeff K. Nkashama, Jean Marie Tshimula, Maximilien V. Dialufuma, Jean Tshibangu Muabila, Mbuyi Mukendi Didier, Hugues Kanda, René Manassé Galekwa, Heber Dibwe Fita, Serge Mundele, Kalonji Kalala, Aristarque Ilunga, Lambert Mukendi Ntobo, Dominique Muteba, Aaron Aruna Abedi,
- Abstract要約: 疫病の流行をモデル化するためには、人々がどう動くかを理解することが不可欠である。
人口移動の予測は、公衆衛生上の緊急時のモデルや効果的な対応計画の策定に不可欠である。
BERTやLLM(Large Language Models)のような事前訓練された言語モデルを用いて,モビリティ予測タスクに特化して,さまざまなアプローチをレビューする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper provides a comprehensive survey of recent advancements in leveraging machine learning techniques, particularly Transformer models, for predicting human mobility patterns during epidemics. Understanding how people move during epidemics is essential for modeling the spread of diseases and devising effective response strategies. Forecasting population movement is crucial for informing epidemiological models and facilitating effective response planning in public health emergencies. Predicting mobility patterns can enable authorities to better anticipate the geographical and temporal spread of diseases, allocate resources more efficiently, and implement targeted interventions. We review a range of approaches utilizing both pretrained language models like BERT and Large Language Models (LLMs) tailored specifically for mobility prediction tasks. These models have demonstrated significant potential in capturing complex spatio-temporal dependencies and contextual patterns in textual data.
- Abstract(参考訳): 本稿では、機械学習技術、特にトランスフォーマーモデルを活用した、流行時の人間の移動パターンの予測における最近の進歩を包括的に調査する。
流行の際の人々の動きを理解することは、病気の拡散をモデル化し、効果的な対応戦略を考案する上で不可欠である。
人口動態の予測は疫学モデルの作成と公衆衛生における効果的な対応計画の策定に不可欠である。
モビリティパターンの予測により、当局は病気の地理的および時間的拡散を予測し、資源をより効率的に割り当て、標的とする介入を実施することができる。
BERTやLLM(Large Language Models)のような事前訓練された言語モデルを用いて,モビリティ予測タスクに特化して,さまざまなアプローチをレビューする。
これらのモデルは、テキストデータ中の複雑な時空間的依存関係とコンテキストパターンをキャプチャする大きな可能性を証明している。
関連論文リスト
- Advancing Real-time Pandemic Forecasting Using Large Language Models: A COVID-19 Case Study [39.70947911556511]
既存の予測モデルは、関連するデータと堅牢な結果翻訳の多面的な性質に苦慮している。
本研究は、テキスト推論問題として、リアルタイムに拡散する疾患の予測を再構築する新しいフレームワークであるPandemicLLMを紹介する。
このモデルは新型コロナウイルス(COVID-19)のパンデミックに適用され、テキストによる公衆衛生政策、ゲノム監視、空間および疫学的時系列データを活用するように訓練されている。
論文 参考訳(メタデータ) (2024-04-10T12:22:03Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Metapopulation Graph Neural Networks: Deep Metapopulation Epidemic
Modeling with Human Mobility [14.587916407752719]
多段階多地域流行予測のための新しいハイブリッドモデルMepoGNNを提案する。
本モデルでは, 確認症例数だけでなく, 疫学的パラメータも明示的に学習できる。
論文 参考訳(メタデータ) (2023-06-26T17:09:43Z) - MPSTAN: Metapopulation-based Spatio-Temporal Attention Network for
Epidemic Forecasting [2.0297284948237366]
メタポピュレーションに基づく時空間注意ネットワーク(MPSTAN)と呼ばれるハイブリッドモデルを提案する。
本モデルは,マルチパッチ疫学知識を時間モデルに取り入れ,パッチ間相互作用を適応的に定義することにより,流行予測の精度を向上させることを目的とする。
論文 参考訳(メタデータ) (2023-06-15T18:12:55Z) - Safe AI for health and beyond -- Monitoring to transform a health
service [51.8524501805308]
機械学習アルゴリズムの出力を監視するために必要なインフラストラクチャを評価する。
モデルのモニタリングと更新の例を示す2つのシナリオを提示します。
論文 参考訳(メタデータ) (2023-03-02T17:27:45Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
この調査は、様々なデータ駆動の方法論および実践的進歩を掘り下げるものである。
疫学的なデータセットと,流行予測に関連する新しいデータストリームを列挙する。
また,これらの予測システムの現実的な展開において生じる経験や課題についても論じる。
論文 参考訳(メタデータ) (2022-07-19T16:15:11Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
ドメイン適応を容易にするデータ拡張手法を提案する。
逆生成したサンプルはドメイン適応時に使用される。
その結果,本手法の有効性とタスクの一般性が確認された。
論文 参考訳(メタデータ) (2021-01-13T03:20:20Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
我々は,多くの地域の流行傾向を同時に予測するテンソル法を開発した。
stelarは離散時間差分方程式のシステムを通じて潜在時間正規化を組み込むことで長期予測を可能にする。
我々は、カウンティレベルと州レベルのCOVID-19データの両方を用いて実験を行い、このモデルが流行の興味深い潜伏パターンを識別できることを示します。
論文 参考訳(メタデータ) (2020-12-08T21:21:47Z) - An Optimal Control Approach to Learning in SIDARTHE Epidemic model [67.22168759751541]
本研究では,疫病データから動的コンパートメンタルモデルの時間変化パラメータを学習するための一般的な手法を提案する。
我々はイタリアとフランスの疫病の進化を予報する。
論文 参考訳(メタデータ) (2020-10-28T10:58:59Z) - Learning to Forecast and Forecasting to Learn from the COVID-19 Pandemic [10.796851110372593]
疫病モデルのためのヒトの移動性を考慮した異種感染率モデルを提案する。
モデルを線形化し、重み付けされた最小二乗を用いることで、我々のモデルは変化傾向に迅速に適応できる。
疫病の初期には、旅行データを用いて予測が増加することが示されている。
論文 参考訳(メタデータ) (2020-04-23T07:25:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。