論文の概要: Türkçe Dil Modellerinin Performans Karşılaştırması Performance Comparison of Turkish Language Models
- arxiv url: http://arxiv.org/abs/2404.17010v1
- Date: Thu, 25 Apr 2024 20:10:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-29 14:33:49.395133
- Title: Türkçe Dil Modellerinin Performans Karşılaştırması Performance Comparison of Turkish Language Models
- Title(参考訳): トルコ語モデルの性能比較
- Authors: Eren Dogan, M. Egemen Uzun, Atahan Uz, H. Emre Seyrek, Ahmed Zeer, Ezgi Sevi, H. Toprak Kesgin, M. Kaan Yuce, M. Fatih Amasyali,
- Abstract要約: 文脈学習と質問応答能力に基づいて,選択した7つの言語モデルの比較を行った。
その結果,質問応答では,教師用データセットを微調整する前に事前学習を継続することで,トルコ語に多言語モデルを適用することに成功していることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The developments that language models have provided in fulfilling almost all kinds of tasks have attracted the attention of not only researchers but also the society and have enabled them to become products. There are commercially successful language models available. However, users may prefer open-source language models due to cost, data privacy, or regulations. Yet, despite the increasing number of these models, there is no comprehensive comparison of their performance for Turkish. This study aims to fill this gap in the literature. A comparison is made among seven selected language models based on their contextual learning and question-answering abilities. Turkish datasets for contextual learning and question-answering were prepared, and both automatic and human evaluations were conducted. The results show that for question-answering, continuing pretraining before fine-tuning with instructional datasets is more successful in adapting multilingual models to Turkish and that in-context learning performances do not much related to question-answering performances.
- Abstract(参考訳): 言語モデルがほぼあらゆるタスクを遂行する上で提供してきた発展は、研究者だけでなく社会からも注目され、それらが製品化されている。
商業的に成功している言語モデルもある。
しかし、ユーザはコスト、データプライバシ、規制のために、オープンソースの言語モデルを好むかもしれない。
しかし、これらのモデルの増加にもかかわらず、トルコにおけるパフォーマンスの包括的な比較は行われていない。
この研究は文学におけるこのギャップを埋めることを目的としている。
文脈学習と質問応答能力に基づいて,選択した7つの言語モデルの比較を行った。
文脈学習と質問応答のためのトルコのデータセットを作成し, 自動評価と人的評価を行った。
その結果,質問応答では,教師データセットによる微調整前の事前学習がトルコ語への多言語モデルの適応に成功しており,文脈内学習性能は質問応答性能とはあまり関係がないことがわかった。
関連論文リスト
- DevBench: A multimodal developmental benchmark for language learning [0.34129029452670606]
タスクと行動データに基づいて視覚言語モデルを評価するベンチマークであるDevBenchを紹介する。
DevBenchは、モデルを人間の言語開発と比較するためのベンチマークを提供する。
これらの比較は、モデルと人間の言語学習プロセスの分岐方法を強調する。
論文 参考訳(メタデータ) (2024-06-14T17:49:41Z) - Bridging the Bosphorus: Advancing Turkish Large Language Models through Strategies for Low-Resource Language Adaptation and Benchmarking [1.3716808114696444]
大規模言語モデル(LLM)は様々な分野において重要になってきており、表現不足の言語における高品質なモデルの緊急性を強調している。
本研究では、データ不足、モデル選択、評価、計算制限など、低リソース言語が直面する固有の課題について検討する。
論文 参考訳(メタデータ) (2024-05-07T21:58:45Z) - Introducing cosmosGPT: Monolingual Training for Turkish Language Models [0.0]
本研究では、この代替手法を用いて作成した宇宙GPTモデルについて紹介する。
次に、ユーザ要求を満たすための基本言語モデルのための新しいファインチューンデータセットと、トルコ語モデルの能力を測定するための新しい評価データセットを導入する。
その結果、モノリンガルコーパスで構築した言語モデルは、他に比べて約10倍小さいにもかかわらず、有望な性能を示した。
論文 参考訳(メタデータ) (2024-04-26T11:34:11Z) - Evaluating Large Language Models on Controlled Generation Tasks [92.64781370921486]
本稿では,異なる粒度を持つ文計画ベンチマークを含む,様々なベンチマークを広範囲に分析する。
大規模言語モデルと最先端の微調整された小型モデルを比較した後、大規模言語モデルが後方に落ちたり、比較されたり、より小型モデルの能力を超えたりしたスペクトルを示す。
論文 参考訳(メタデータ) (2023-10-23T03:48:24Z) - Learning Cross-lingual Visual Speech Representations [108.68531445641769]
言語横断的な自己監督型視覚表現学習は、ここ数年、研究トピックとして成長している。
我々は最近提案したRAVEn(Raw Audio-Visual Speechs)フレームワークを用いて,未ラベルデータを用いた音声-視覚モデルの事前学習を行う。
1)データ量が多いマルチ言語モデルはモノリンガルモデルよりも優れているが、データの量を維持すると、モノリンガルモデルの性能が向上する傾向にある。
論文 参考訳(メタデータ) (2023-03-14T17:05:08Z) - Lessons learned from the evaluation of Spanish Language Models [27.653133576469276]
本稿では,スペイン語の言語モデルと,以下の結果との比較を行う。
我々は、その根底にある要因を理解するために、さらなる研究の必要性を論じる。
スペイン語のための言語技術開発における最近の活動は歓迎されるが、我々の結果は、言語モデルの構築は依然としてオープンでリソースの多い問題であることを示している。
論文 参考訳(メタデータ) (2022-12-16T10:33:38Z) - Language Models are Few-shot Multilingual Learners [66.11011385895195]
我々は、非英語言語における多言語分類を行う際に、GPTモデルとT5モデルの多言語的スキルを評価する。
文脈としての英語の例を見ると、事前学習された言語モデルは、英語のテストサンプルだけでなく、英語以外のサンプルも予測できることが示されている。
論文 参考訳(メタデータ) (2021-09-16T03:08:22Z) - Specializing Multilingual Language Models: An Empirical Study [50.7526245872855]
事前訓練された多言語モデルからの文脈化語表現は、自然言語タスクに対処するデファクトスタンダードとなっている。
これらのモデルではまれに、あるいは一度も見られない言語では、そのようなモデルを直接使用すると、最適な表現やデータの使用につながることが多い。
論文 参考訳(メタデータ) (2021-06-16T18:13:55Z) - Improving Cross-Lingual Reading Comprehension with Self-Training [62.73937175625953]
現在の最新モデルは、いくつかのベンチマークで人間のパフォーマンスを上回っています。
前作では、ゼロショットのクロスリンガル読解のための事前訓練された多言語モデルの能力を明らかにしている。
本稿では,ラベルのないデータを利用して性能を向上する。
論文 参考訳(メタデータ) (2021-05-08T08:04:30Z) - Comparison of Interactive Knowledge Base Spelling Correction Models for
Low-Resource Languages [81.90356787324481]
低リソース言語に対する正規化の推進は、パターンの予測が難しいため、難しい作業である。
この研究は、ターゲット言語データに様々な量を持つニューラルモデルとキャラクタ言語モデルの比較を示す。
我々の利用シナリオは、ほぼゼロのトレーニング例によるインタラクティブな修正であり、より多くのデータが収集されるにつれてモデルを改善する。
論文 参考訳(メタデータ) (2020-10-20T17:31:07Z) - An Empirical Study of Factors Affecting Language-Independent Models [11.976665726887733]
言語に依存しないモデルは、モノリンガルデータを用いて訓練されたモデルに匹敵するか、さらに優れることを示す。
我々は,多くの異なる言語で言語に依存しないモデルを実験し,それらが類型的に類似した言語に適していることを示す。
論文 参考訳(メタデータ) (2019-12-30T22:41:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。