論文の概要: Generating Minimalist Adversarial Perturbations to Test Object-Detection Models: An Adaptive Multi-Metric Evolutionary Search Approach
- arxiv url: http://arxiv.org/abs/2404.17020v1
- Date: Thu, 25 Apr 2024 20:25:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-29 14:33:49.384251
- Title: Generating Minimalist Adversarial Perturbations to Test Object-Detection Models: An Adaptive Multi-Metric Evolutionary Search Approach
- Title(参考訳): 物体検出モデルに対するミニマリスト逆転摂動の生成:適応的多段階進化探索手法
- Authors: Cristopher McIntyre-Garcia, Adrien Heymans, Beril Borali, Won-Sook Lee, Shiva Nejati,
- Abstract要約: TM-EVOは、敵攻撃に対するオブジェクト検出DLモデルの堅牢性を評価するための効率的なアルゴリズムである。
我々は、広く使われているオブジェクト検出DLモデル、DETRとFaster R-CNN、およびオープンソースデータセットであるCOCOとKITTIについてTM-EVOを評価する。
- 参考スコア(独自算出の注目度): 1.7396341474676855
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep Learning (DL) models excel in computer vision tasks but can be susceptible to adversarial examples. This paper introduces Triple-Metric EvoAttack (TM-EVO), an efficient algorithm for evaluating the robustness of object-detection DL models against adversarial attacks. TM-EVO utilizes a multi-metric fitness function to guide an evolutionary search efficiently in creating effective adversarial test inputs with minimal perturbations. We evaluate TM-EVO on widely-used object-detection DL models, DETR and Faster R-CNN, and open-source datasets, COCO and KITTI. Our findings reveal that TM-EVO outperforms the state-of-the-art EvoAttack baseline, leading to adversarial tests with less noise while maintaining efficiency.
- Abstract(参考訳): ディープラーニング(DL)モデルはコンピュータビジョンタスクに優れているが、敵の例に感受性がある。
本稿では,オブジェクト検出用DLモデルの敵攻撃に対する堅牢性を評価するアルゴリズムとして,Triple-Metric EvoAttack (TM-EVO)を提案する。
TM-EVOはマルチメトリック・フィットネス機能を用いて、摂動を最小限に抑えた効果的な対角テスト入力を作成するために進化的探索を効率的に導く。
我々は、広く使われているオブジェクト検出DLモデル、DETRとFaster R-CNN、およびオープンソースデータセットであるCOCOとKITTIについてTM-EVOを評価する。
その結果, TM-EVOは最先端のEvoAttackベースラインより優れており, 効率を保ちつつ, ノイズが少なく, 対向試験を行なえることがわかった。
関連論文リスト
- Direct Value Optimization: Improving Chain-of-Thought Reasoning in LLMs with Refined Values [31.415598465903884]
直接価値最適化(DVO)は、複雑な推論タスクにおいて大きな言語モデルを拡張するための革新的な強化学習フレームワークである。
DVOは個々の推論ステップで値信号を利用し、平均2乗誤差損失によってモデルを最適化する。
数学的および常識的推論タスクに関する実証分析により、DVOは既存のオフライン優先最適化手法よりも一貫して優れていることが示された。
論文 参考訳(メタデータ) (2025-02-19T13:51:05Z) - Self-Consistent Model-based Adaptation for Visual Reinforcement Learning [27.701421196547674]
視覚強化学習エージェントは、視覚障害による実世界のアプリケーションの性能低下に直面している。
既存の方法は、手作りの拡張でポリシーの表現を微調整することに依存している。
本稿では、ポリシーを変更することなくロバスト適応を促進する新しい手法である自己一貫性モデルベース適応(SCMA)を提案する。
論文 参考訳(メタデータ) (2025-02-14T05:23:56Z) - Oriented Tiny Object Detection: A Dataset, Benchmark, and Dynamic Unbiased Learning [51.170479006249195]
本研究では,新しいデータセット,ベンチマーク,動的粗大な学習手法を提案する。
提案するデータセットであるAI-TOD-Rは、すべてのオブジェクト指向オブジェクト検出データセットの中で最小のオブジェクトサイズを特徴としている。
完全教師付きおよびラベル効率の両アプローチを含む,幅広い検出パラダイムにまたがるベンチマークを提案する。
論文 参考訳(メタデータ) (2024-12-16T09:14:32Z) - Analytic Continual Test-Time Adaptation for Multi-Modality Corruption [23.545997349882857]
テスト時間適応(TTA)は、トレーニング済みのモデルがソースとターゲットデータセット間のギャップを埋めることを支援することを目的としている。
本稿では,MM-CTTAタスクのためのMDAA(Multi-modality Dynamic Analytic Adapter)を提案する。
MDAAはMM-CTTA上での最先端性能を実現し,信頼性の高いモデル適応を実現する。
論文 参考訳(メタデータ) (2024-10-29T01:21:24Z) - Auto-GDA: Automatic Domain Adaptation for Efficient Grounding Verification in Retrieval Augmented Generation [13.120801609024147]
検索拡張生成(RAG)は,大規模言語モデル(LLM)出力の現実性を高めることが示されている。
RAG入力は、NLIモデルのトレーニングに使用されるほとんどのデータセットよりも複雑である。
教師なしドメイン適応を実現するために自動生成ドメイン適応(Auto-GDA)を導入する。
論文 参考訳(メタデータ) (2024-10-04T14:21:27Z) - Continual Test-time Domain Adaptation via Dynamic Sample Selection [38.82346845855512]
本稿では,連続テスト時間領域適応(CTDA)のための動的サンプル選択法を提案する。
誤情報を誤用するリスクを低減するため,高品質と低品質の両方のサンプルに共同正負の学習を適用した。
私たちのアプローチは3Dポイントのクラウドドメインでも評価されており、その汎用性とより広範な適用可能性を示している。
論文 参考訳(メタデータ) (2023-10-05T06:35:21Z) - Value function estimation using conditional diffusion models for control [62.27184818047923]
拡散値関数(DVF)と呼ばれる単純なアルゴリズムを提案する。
拡散モデルを用いて環境-ロボット相互作用の連成多段階モデルを学ぶ。
本稿では,DVFを用いて複数のコントローラの状態を効率よく把握する方法を示す。
論文 参考訳(メタデータ) (2023-06-09T18:40:55Z) - Temporal Output Discrepancy for Loss Estimation-based Active Learning [65.93767110342502]
ラベルのないサンプルが高損失を伴っていると信じられている場合に,データアノテーションのオラクルに問い合わせる,新しいディープラーニングアプローチを提案する。
本手法は,画像分類やセマンティックセグメンテーションタスクにおける最先端の能動学習手法よりも優れた性能を実現する。
論文 参考訳(メタデータ) (2022-12-20T19:29:37Z) - Towards Robust Dataset Learning [90.2590325441068]
本稿では,頑健なデータセット学習問題を定式化するための三段階最適化法を提案する。
ロバストな特徴と非ロバストな特徴を特徴付ける抽象モデルの下で,提案手法はロバストなデータセットを確実に学習する。
論文 参考訳(メタデータ) (2022-11-19T17:06:10Z) - CARLA-GeAR: a Dataset Generator for a Systematic Evaluation of
Adversarial Robustness of Vision Models [61.68061613161187]
本稿では,合成データセットの自動生成ツールであるCARLA-GeARについて述べる。
このツールは、Python APIを使用して、CARLAシミュレータ上に構築されており、自律運転のコンテキストにおいて、いくつかのビジョンタスク用のデータセットを生成することができる。
本稿では,CARLA-GeARで生成されたデータセットが,現実世界の敵防衛のベンチマークとして今後どのように利用されるかを示す。
論文 参考訳(メタデータ) (2022-06-09T09:17:38Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
観察ifoからの模倣学習において、学習エージェントは、実演者の生成した制御信号にアクセスせずに、実演行動の観察のみを用いて実演エージェントを模倣しようとする。
近年、逆模倣学習に基づく手法は、ifO問題に対する最先端のパフォーマンスをもたらすが、データ非効率でモデルなしの強化学習アルゴリズムに依存するため、サンプルの複雑さに悩まされることが多い。
この問題は、サンプルの収集が時間、エネルギー、およびリスクの面で高いコストを被る可能性がある現実世界の設定に展開することは非現実的です。
よりデータ効率の高いifOアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-31T23:46:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。