論文の概要: Analytic Continual Test-Time Adaptation for Multi-Modality Corruption
- arxiv url: http://arxiv.org/abs/2410.22373v1
- Date: Tue, 29 Oct 2024 01:21:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:28:36.298350
- Title: Analytic Continual Test-Time Adaptation for Multi-Modality Corruption
- Title(参考訳): 多モード故障に対する連続試験時間適応解析
- Authors: Yufei Zhang, Yicheng Xu, Hongxin Wei, Zhiping Lin, Huiping Zhuang,
- Abstract要約: テスト時間適応(TTA)は、トレーニング済みのモデルがソースとターゲットデータセット間のギャップを埋めることを支援することを目的としている。
本稿では,MM-CTTAタスクのためのMDAA(Multi-modality Dynamic Analytic Adapter)を提案する。
MDAAはMM-CTTA上での最先端性能を実現し,信頼性の高いモデル適応を実現する。
- 参考スコア(独自算出の注目度): 23.545997349882857
- License:
- Abstract: Test-Time Adaptation (TTA) aims to help pre-trained model bridge the gap between source and target datasets using only the pre-trained model and unlabelled test data. A key objective of TTA is to address domain shifts in test data caused by corruption, such as weather changes, noise, or sensor malfunctions. Multi-Modal Continual Test-Time Adaptation (MM-CTTA), an extension of TTA with better real-world applications, further allows pre-trained models to handle multi-modal inputs and adapt to continuously-changing target domains. MM-CTTA typically faces challenges including error accumulation, catastrophic forgetting, and reliability bias, with few existing approaches effectively addressing these issues in multi-modal corruption scenarios. In this paper, we propose a novel approach, Multi-modality Dynamic Analytic Adapter (MDAA), for MM-CTTA tasks. We innovatively introduce analytic learning into TTA, using the Analytic Classifiers (ACs) to prevent model forgetting. Additionally, we develop Dynamic Selection Mechanism (DSM) and Soft Pseudo-label Strategy (SPS), which enable MDAA to dynamically filter reliable samples and integrate information from different modalities. Extensive experiments demonstrate that MDAA achieves state-of-the-art performance on MM-CTTA tasks while ensuring reliable model adaptation.
- Abstract(参考訳): Test-Time Adaptation (TTA)は、事前トレーニングされたモデルと未学習のテストデータのみを使用して、ソースとターゲットデータセットのギャップを埋めることを目的としている。
TTAの主な目的は、天候の変化、騒音、センサーの故障などの汚職によって引き起こされるテストデータのドメインシフトに対処することである。
TTAの拡張であるMulti-Modal Continual Test-Time Adaptation (MM-CTTA)は、トレーニング済みモデルでマルチモーダル入力を処理し、継続的に変化するターゲットドメインに適応することを可能にする。
MM-CTTAは通常、エラーの蓄積、破滅的な忘れ込み、信頼性のバイアスといった問題に直面し、既存のアプローチでは、これらの問題にマルチモーダルな汚職シナリオで効果的に対処するアプローチがほとんどない。
本稿では,MM-CTTAタスクのためのMDAA(Multi-modality Dynamic Analytic Adapter)を提案する。
解析的分類器 (AC) を用いて, TTA に解析学習を導入し, モデル忘れを防止する。
また,DSM(Dynamic Selection Mechanism)やSPS(Soft Pseudo-label Strategy)も開発した。
MDAA は MM-CTTA タスクにおいて,信頼性の高いモデル適応性を確保しつつ,最先端の性能を達成することを実証した。
関連論文リスト
- MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
テスト時間適応(TTA)は、モデルの一般化性を高めるための有望なパラダイムとして登場した。
本稿では,Met-In-The-MiddleをベースとしたMITAを提案する。
論文 参考訳(メタデータ) (2024-10-12T07:02:33Z) - Enhancing Test Time Adaptation with Few-shot Guidance [35.13317598777832]
深層ニューラルネットワークは、トレーニング(ソース)とテスト(ターゲット)データのドメインシフトに直面しながら、大きなパフォーマンス低下に直面することが多い。
TTA(Test Time Adaptation)法は,事前学習したソースモデルを用いて,配信外ストリーミングターゲットデータを処理する手法として提案されている。
本稿では,Few-Shot Test Time Adaptation (FS-TTA) を開発した。
論文 参考訳(メタデータ) (2024-09-02T15:50:48Z) - DATTA: Towards Diversity Adaptive Test-Time Adaptation in Dynamic Wild World [6.816521410643928]
本稿では,QoE(Quality of Experience)の改善を目的としたDATTA(Diversity Adaptive Test-Time Adaptation)という手法を提案する。
バッチの多様性を評価するダイバーシティ識別(DD)、DDの洞察に基づく正規化手法を調整するためのダイバーシティ適応バッチ正規化(DABN)、モデルを選択的に微調整するダイバーシティ適応細調整(DAFT)の3つの主要なコンポーネントが特徴である。
実験結果から,本手法の精度は最先端手法と比較して最大21%向上することがわかった。
論文 参考訳(メタデータ) (2024-08-15T09:50:11Z) - Combating Missing Modalities in Egocentric Videos at Test Time [92.38662956154256]
現実のアプリケーションは、プライバシの懸念、効率性の必要性、ハードウェアの問題により、不完全なモダリティを伴う問題に直面することが多い。
再トレーニングを必要とせずに,テスト時にこの問題に対処する新しい手法を提案する。
MiDlは、欠落したモダリティをテスト時にのみ扱う、自己管理型のオンラインソリューションとしては初めてのものだ。
論文 参考訳(メタデータ) (2024-04-23T16:01:33Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML)は、複数の事前学習モデルを活用することで、独自のトレーニングデータを必要とせずに、新しいタスクを効率的に学習することを目的としている。
TDS(Task-Distribution Shift)とTDC(Task-Distribution Corruption)の2つの大きな課題を初めて明らかにした。
論文 参考訳(メタデータ) (2023-11-23T15:46:54Z) - Distribution-Aware Continual Test-Time Adaptation for Semantic Segmentation [33.75630514826721]
実世界の応用において, セマンティックセグメンテーションCTTAを効率的かつ実用的なものにするための分散対応チューニング(DAT)手法を提案する。
DATは、連続的な適応プロセス中にデータ分布に基づいて、トレーニング可能なパラメータの2つの小さなグループを適応的に選択し、更新する。
我々は2つの広く使われているセマンティックセマンティックセマンティクスCTTAベンチマークで実験を行い、従来の最先端手法と比較して有望な性能を実現した。
論文 参考訳(メタデータ) (2023-09-24T10:48:20Z) - AR-TTA: A Simple Method for Real-World Continual Test-Time Adaptation [1.4530711901349282]
本稿では,自律運転のためのデータセット,すなわちCLAD-CとShiFTを用いたテスト時間適応手法の検証を提案する。
現在のテスト時間適応手法は、ドメインシフトの様々な程度を効果的に扱うのに苦労している。
モデル安定性を高めるために、小さなメモリバッファを組み込むことで、確立された自己学習フレームワークを強化する。
論文 参考訳(メタデータ) (2023-09-18T19:34:23Z) - Test-time Adaptation in the Dynamic World with Compound Domain Knowledge
Management [75.86903206636741]
テスト時間適応(TTA)により、モデルは新しい環境に適応し、テスト時間中にパフォーマンスを向上させることができる。
TTAのいくつかの研究は、継続的に変化する環境において、有望な適応性能を示している。
本稿ではまず,複合ドメイン知識管理を用いた堅牢なTTAフレームワークを提案する。
次に、ソースと現在のターゲットドメイン間のドメイン類似性を用いて適応率を変調する新しい正規化を考案する。
論文 参考訳(メタデータ) (2022-12-16T09:02:01Z) - Efficient Test-Time Model Adaptation without Forgetting [60.36499845014649]
テストタイム適応は、トレーニングとテストデータの間の潜在的な分散シフトに取り組むことを目指している。
信頼性および非冗長なサンプルを同定するためのアクティブなサンプル選択基準を提案する。
また、重要なモデルパラメータを劇的な変化から制約するFisher regularizerを導入します。
論文 参考訳(メタデータ) (2022-04-06T06:39:40Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
数ショットのメトリックベースのアプローチのための一般的なトランスダクティブ推論手法は、最も確実なクエリ例の平均で、各クラスのプロトタイプを更新することである。
本稿では,各クエリの信頼度をメタラーニングして,ラベルのないクエリに最適な重みを割り当てる手法を提案する。
4つのベンチマークデータセットに対してメタ学習の信頼度で、少数ショットの学習モデルを検証した。
論文 参考訳(メタデータ) (2020-02-27T10:22:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。