CyNetDiff -- A Python Library for Accelerated Implementation of Network Diffusion Models
- URL: http://arxiv.org/abs/2404.17059v1
- Date: Thu, 25 Apr 2024 21:59:55 GMT
- Title: CyNetDiff -- A Python Library for Accelerated Implementation of Network Diffusion Models
- Authors: Eliot W. Robson, Dhemath Reddy, Abhishek K. Umrawal,
- Abstract summary: CyNetDiff is a Python library with components written in Cython to provide improved performance for these computationally intensive diffusion tasks.
In many research tasks, these simulations are the most computationally intensive task, so it would be desirable to have a library for these with an interface to a high-level language.
- Score: 0.9831489366502302
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In recent years, there has been increasing interest in network diffusion models and related problems. The most popular of these are the independent cascade and linear threshold models. Much of the recent experimental work done on these models requires a large number of simulations conducted on large graphs, a computationally expensive task suited for low-level languages. However, many researchers prefer the use of higher-level languages (such as Python) for their flexibility and shorter development times. Moreover, in many research tasks, these simulations are the most computationally intensive task, so it would be desirable to have a library for these with an interface to a high-level language with the performance of a low-level language. To fill this niche, we introduce CyNetDiff, a Python library with components written in Cython to provide improved performance for these computationally intensive diffusion tasks.
Related papers
- Low-Cost Language Models: Survey and Performance Evaluation on Python Code Generation [0.0]
Large Language Models (LLMs) have become a popular choice for many Natural Language Processing (NLP) tasks.
LLMs' substantial computational and memory requirements often make them inaccessible to users with limited resources.
This paper focuses on very low-cost models which offer a more accessible alternative to resource-intensive LLMs.
arXiv Detail & Related papers (2024-04-17T08:16:48Z) - The Languini Kitchen: Enabling Language Modelling Research at Different
Scales of Compute [66.84421705029624]
We introduce an experimental protocol that enables model comparisons based on equivalent compute, measured in accelerator hours.
We pre-process an existing large, diverse, and high-quality dataset of books that surpasses existing academic benchmarks in quality, diversity, and document length.
This work also provides two baseline models: a feed-forward model derived from the GPT-2 architecture and a recurrent model in the form of a novel LSTM with ten-fold throughput.
arXiv Detail & Related papers (2023-09-20T10:31:17Z) - Test-Time Training on Nearest Neighbors for Large Language Models [25.365366617508663]
We build a large-scale distributed index based on text embeddings of the Pile dataset.
For each test input, our system retrieves its neighbors and fine-tunes the model on their text.
Surprisingly, retrieving and training on as few as 20 neighbors drastically improves performance across more than 20 language modeling tasks.
arXiv Detail & Related papers (2023-05-29T08:03:28Z) - Multi-lingual Evaluation of Code Generation Models [82.7357812992118]
We present new benchmarks on evaluation code generation models: MBXP and Multilingual HumanEval, and MathQA-X.
These datasets cover over 10 programming languages.
We are able to assess the performance of code generation models in a multi-lingual fashion.
arXiv Detail & Related papers (2022-10-26T17:17:06Z) - Pythae: Unifying Generative Autoencoders in Python -- A Benchmarking Use
Case [0.0]
We present Pythae, a versatile open-source Python library providing straightforward, reproducible and reliable use of generative autoencoder models.
We present and compare 19 generative autoencoder models representative of some of the main improvements on downstream tasks.
arXiv Detail & Related papers (2022-06-16T17:11:41Z) - Improving Classifier Training Efficiency for Automatic Cyberbullying
Detection with Feature Density [58.64907136562178]
We study the effectiveness of Feature Density (FD) using different linguistically-backed feature preprocessing methods.
We hypothesise that estimating dataset complexity allows for the reduction of the number of required experiments.
The difference in linguistic complexity of datasets allows us to additionally discuss the efficacy of linguistically-backed word preprocessing.
arXiv Detail & Related papers (2021-11-02T15:48:28Z) - Efficient Nearest Neighbor Language Models [114.40866461741795]
Non-parametric neural language models (NLMs) learn predictive distributions of text utilizing an external datastore.
We show how to achieve up to a 6x speed-up in inference speed while retaining comparable performance.
arXiv Detail & Related papers (2021-09-09T12:32:28Z) - Using Python for Model Inference in Deep Learning [0.6027358520885614]
We show how it is possible to meet performance and packaging constraints while performing inference in Python.
We present a way of using multiple Python interpreters within a single process to achieve scalable inference.
arXiv Detail & Related papers (2021-04-01T04:48:52Z) - Comparison of Interactive Knowledge Base Spelling Correction Models for
Low-Resource Languages [81.90356787324481]
Spelling normalization for low resource languages is a challenging task because the patterns are hard to predict.
This work shows a comparison of a neural model and character language models with varying amounts on target language data.
Our usage scenario is interactive correction with nearly zero amounts of training examples, improving models as more data is collected.
arXiv Detail & Related papers (2020-10-20T17:31:07Z) - A Fortran-Keras Deep Learning Bridge for Scientific Computing [6.768544973019004]
We introduce a software library, the Fortran-Keras Bridge (FKB)
The paper describes several unique features offered by FKB, such as customizable layers, loss functions, and network ensembles.
The paper concludes with a case study that applies FKB to address open questions about the robustness of an experimental approach to global climate simulation.
arXiv Detail & Related papers (2020-04-14T15:10:09Z) - OPFython: A Python-Inspired Optimum-Path Forest Classifier [68.8204255655161]
This paper proposes a Python-based Optimum-Path Forest framework, denoted as OPFython.
As OPFython is a Python-based library, it provides a more friendly environment and a faster prototyping workspace than the C language.
arXiv Detail & Related papers (2020-01-28T15:46:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.