Automated Data Visualization from Natural Language via Large Language Models: An Exploratory Study
- URL: http://arxiv.org/abs/2404.17136v1
- Date: Fri, 26 Apr 2024 03:25:35 GMT
- Title: Automated Data Visualization from Natural Language via Large Language Models: An Exploratory Study
- Authors: Yang Wu, Yao Wan, Hongyu Zhang, Yulei Sui, Wucai Wei, Wei Zhao, Guandong Xu, Hai Jin,
- Abstract summary: The Natural Language to Visualization (NL2Vis) task aims to transform natural-language descriptions into visual representations for a grounded table.
Many deep learning-based approaches have been developed for NL2Vis, but challenges persist in visualizing data sourced from unseen databases or spanning multiple tables.
Taking inspiration from the remarkable generation capabilities of Large Language Models (LLMs), this paper conducts an empirical study to evaluate their potential in generating visualizations.
- Score: 41.84915013818794
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Natural Language to Visualization (NL2Vis) task aims to transform natural-language descriptions into visual representations for a grounded table, enabling users to gain insights from vast amounts of data. Recently, many deep learning-based approaches have been developed for NL2Vis. Despite the considerable efforts made by these approaches, challenges persist in visualizing data sourced from unseen databases or spanning multiple tables. Taking inspiration from the remarkable generation capabilities of Large Language Models (LLMs), this paper conducts an empirical study to evaluate their potential in generating visualizations, and explore the effectiveness of in-context learning prompts for enhancing this task. In particular, we first explore the ways of transforming structured tabular data into sequential text prompts, as to feed them into LLMs and analyze which table content contributes most to the NL2Vis. Our findings suggest that transforming structured tabular data into programs is effective, and it is essential to consider the table schema when formulating prompts. Furthermore, we evaluate two types of LLMs: finetuned models (e.g., T5-Small) and inference-only models (e.g., GPT-3.5), against state-of-the-art methods, using the NL2Vis benchmarks (i.e., nvBench). The experimental results reveal that LLMs outperform baselines, with inference-only models consistently exhibiting performance improvements, at times even surpassing fine-tuned models when provided with certain few-shot demonstrations through in-context learning. Finally, we analyze when the LLMs fail in NL2Vis, and propose to iteratively update the results using strategies such as chain-of-thought, role-playing, and code-interpreter. The experimental results confirm the efficacy of iterative updates and hold great potential for future study.
Related papers
- SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - V-RECS, a Low-Cost LLM4VIS Recommender with Explanations, Captioning and Suggestions [3.3235895997314726]
We present V-RECS, the first Visual Recommender augmented with explanations(E), captioning(C), and suggestions(S) for further data exploration.
V-RECS' visualization narratives facilitate both response verification and data exploration by non-expert users.
arXiv Detail & Related papers (2024-06-21T15:50:10Z) - Unleashing the Potential of Large Language Models for Predictive Tabular Tasks in Data Science [17.910306140400046]
This research endeavors to apply Large Language Models (LLMs) towards addressing these predictive tasks.
Our research aims to mitigate this gap by compiling a comprehensive corpus of tables annotated with instructions and executing large-scale training of Llama-2.
arXiv Detail & Related papers (2024-03-29T14:41:21Z) - Learning to Reduce: Optimal Representations of Structured Data in
Prompting Large Language Models [42.16047343029512]
Large Language Models (LLMs) have been widely used as general-purpose AI agents.
We propose a framework, Learning to Reduce, that fine-tunes a language model to generate a reduced version of an input context.
We show that our model achieves comparable accuracies in selecting the relevant evidence from an input context.
arXiv Detail & Related papers (2024-02-22T00:41:23Z) - HeLM: Highlighted Evidence augmented Language Model for Enhanced Table-to-Text Generation [7.69801337810352]
We conduct parameter-efficient fine-tuning on the LLaMA2 model.
Our approach involves injecting reasoning information into the input by emphasizing table-specific row data.
On both the FetaQA and QTSumm datasets, our approach achieved state-of-the-art results.
arXiv Detail & Related papers (2023-11-15T12:02:52Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z) - Large Language Models Are Latent Variable Models: Explaining and Finding
Good Demonstrations for In-Context Learning [104.58874584354787]
In recent years, pre-trained large language models (LLMs) have demonstrated remarkable efficiency in achieving an inference-time few-shot learning capability known as in-context learning.
This study aims to examine the in-context learning phenomenon through a Bayesian lens, viewing real-world LLMs as latent variable models.
arXiv Detail & Related papers (2023-01-27T18:59:01Z) - What Makes Data-to-Text Generation Hard for Pretrained Language Models? [17.07349898176898]
Expressing natural language descriptions of structured facts or relations -- data-to-text generation (D2T) -- increases the accessibility of structured knowledge repositories.
Previous work shows that pre-trained language models(PLMs) perform remarkably well on this task after fine-tuning on a significant amount of task-specific training data.
We conduct an empirical study of both fine-tuned and auto-regressive PLMs on the DART multi-domain D2T dataset.
arXiv Detail & Related papers (2022-05-23T17:58:39Z) - e-ViL: A Dataset and Benchmark for Natural Language Explanations in
Vision-Language Tasks [52.918087305406296]
We introduce e-ViL, a benchmark for evaluate explainable vision-language tasks.
We also introduce e-SNLI-VE, the largest existing dataset with NLEs.
We propose a new model that combines UNITER, which learns joint embeddings of images and text, and GPT-2, a pre-trained language model.
arXiv Detail & Related papers (2021-05-08T18:46:33Z) - Learning Contextual Representations for Semantic Parsing with
Generation-Augmented Pre-Training [86.91380874390778]
We present Generation-Augmented Pre-training (GAP), that jointly learns representations of natural language utterances and table schemas by leveraging generation models to generate pre-train data.
Based on experimental results, neural semantics that leverage GAP MODEL obtain new state-of-the-art results on both SPIDER and CRITERIA-TO-generative benchmarks.
arXiv Detail & Related papers (2020-12-18T15:53:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.