論文の概要: Quantifying Memorization of Domain-Specific Pre-trained Language Models using Japanese Newspaper and Paywalls
- arxiv url: http://arxiv.org/abs/2404.17143v1
- Date: Fri, 26 Apr 2024 04:12:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-29 14:04:24.298091
- Title: Quantifying Memorization of Domain-Specific Pre-trained Language Models using Japanese Newspaper and Paywalls
- Title(参考訳): 日本語新聞とペイウォールを用いたドメイン特化事前学習言語モデルの記憶量の定量化
- Authors: Shotaro Ishihara,
- Abstract要約: 日本語新聞記事の限定コーパスを用いて,ドメイン固有言語モデルを事前訓練した。
実験の結果、ドメイン固有のPLMが大規模にコピー&ペーストされることが判明した。
我々の評価は、新聞のペイウォールに焦点をあてることで、データ汚染の懸念から緩和される。
- 参考スコア(独自算出の注目度): 0.5801621787540268
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dominant pre-trained language models (PLMs) have been successful in high-quality natural language generation. However, the analysis of their generation is not mature: do they acquire generalizable linguistic abstractions, or do they simply memorize and recover substrings of the training data? Especially, few studies focus on domain-specific PLM. In this study, we pre-trained domain-specific GPT-2 models using a limited corpus of Japanese newspaper articles and quantified memorization of training data by comparing them with general Japanese GPT-2 models. Our experiments revealed that domain-specific PLMs sometimes "copy and paste" on a large scale. Furthermore, we replicated the empirical finding that memorization is related to duplication, model size, and prompt length, in Japanese the same as in previous English studies. Our evaluations are relieved from data contamination concerns by focusing on newspaper paywalls, which prevent their use as training data. We hope that our paper encourages a sound discussion such as the security and copyright of PLMs.
- Abstract(参考訳): 支配的な事前学習型言語モデル(PLM)は高品質な自然言語生成に成功している。
しかし、それらの世代の分析は成熟していない:それらは一般化可能な言語抽象化を取得するのか、それとも単にトレーニングデータのサブストリングを記憶し、復元するだけなのか?
特にドメイン特異的なPLMに焦点を当てた研究はほとんどない。
本研究では,日本語新聞記事の限定コーパスを用いて,ドメイン固有GPT-2モデルを事前学習し,一般の日本語GPT-2モデルと比較することにより,トレーニングデータの定量化を行った。
実験の結果,ドメイン固有のPLMが大規模にコピー&ペーストされることが判明した。
さらに, 過去の英語研究と同様, 暗記は重複, モデルサイズ, 即時長と関係があることを実証的に再現した。
本評価は, 新聞ペイウォールに着目したデータ汚染の懸念から緩和され, トレーニングデータとしての利用を妨げている。
PLMのセキュリティや著作権など,健全な議論を促すことを願っています。
関連論文リスト
- Adaptation Odyssey in LLMs: Why Does Additional Pretraining Sometimes Fail to Improve? [19.34040322172224]
テキストドメイン上でモデルをトレーニングすることは、同じドメインのテスト部分において、その難易度を低下させる可能性があることを示す。
我々の発見は、いつモデルを適応するか、いつ基礎的な能力に頼るかを決める上で、私たちを導くでしょう。
論文 参考訳(メタデータ) (2024-10-08T00:37:16Z) - Do Membership Inference Attacks Work on Large Language Models? [141.2019867466968]
メンバーシップ推論攻撃(MIA)は、特定のデータポイントがターゲットモデルのトレーニングデータのメンバーであるかどうかを予測しようとする。
我々は、Pileで訓練された言語モデルに対して、MIAの大規模評価を行い、そのパラメータは160Mから12Bまでである。
様々な LLM サイズや領域にまたがるほとんどの設定において,MIA はランダムな推測よりもほとんど優れていないことがわかった。
論文 参考訳(メタデータ) (2024-02-12T17:52:05Z) - Jamp: Controlled Japanese Temporal Inference Dataset for Evaluating
Generalization Capacity of Language Models [18.874880342410876]
本稿では、時間的推測に焦点を当てた日本のベンチマークであるJampを紹介する。
我々のデータセットには時間的推論パターンが含まれており、きめ細かい分析を行うことができます。
時制フラグメントに基づいてデータセットを分割することにより,単言語/多言語LMの一般化能力を評価する。
論文 参考訳(メタデータ) (2023-06-19T07:00:14Z) - How do languages influence each other? Studying cross-lingual data sharing during LM fine-tuning [14.02101305717738]
多言語大言語モデル(MLLM)は、多くの異なる言語からのデータに基づいて共同で訓練される。
言語がどの程度、どの条件下で、互いのデータに依存しているかは、まだ不明である。
MLLMは、細調整の初期段階から複数の言語からのデータに依存しており、細調整の進行に伴って、この依存度が徐々に増加することが判明した。
論文 参考訳(メタデータ) (2023-05-22T17:47:41Z) - Sample Efficient Approaches for Idiomaticity Detection [6.481818246474555]
本研究は, 慣用性検出の効率的な手法を探索する。
特に,いくつかの分類法であるPET(Pattern Exploit Training)と,文脈埋め込みの効率的な方法であるBERTRAM(BERTRAM)の影響について検討した。
実験の結果,PETは英語のパフォーマンスを向上するが,ポルトガル語やガリシア語では効果が低下し,バニラmBERTと同程度の総合的な性能が得られた。
論文 参考訳(メタデータ) (2022-05-23T13:46:35Z) - Language Contamination Explains the Cross-lingual Capabilities of
English Pretrained Models [79.38278330678965]
一般的な英語事前学習コーパスには、かなりの量の非英語テキストが含まれていることが判明した。
これにより、大規模なデータセットで数十億の外国語トークンが生成される。
そして、これらの少数の非英語データでさえ、それらに基づいて訓練されたモデルの言語間移動を促進することを実証する。
論文 参考訳(メタデータ) (2022-04-17T23:56:54Z) - Bridging the Gap between Language Models and Cross-Lingual Sequence
Labeling [101.74165219364264]
大規模言語間事前学習言語モデル (xPLM) は、言語間シーケンスラベリングタスクにおいて有効であることを示す。
大きな成功にもかかわらず、事前学習と微調整の段階の間には訓練対象のギャップがあるという経験的観察を描いている。
本稿では,まず,言語間インフォーマティブ・スパン・マスキング(CLISM)と呼ばれるxSLのための事前学習タスクを設計し,目的のギャップを解消する。
第2に、コントラスト学習を利用して入力並列表現間の一貫性を促進するContrAstive-Consistency Regularization (CACR)を提案する。
論文 参考訳(メタデータ) (2022-04-11T15:55:20Z) - Bridging the Data Gap between Training and Inference for Unsupervised
Neural Machine Translation [49.916963624249355]
UNMTモデルは、翻訳されたソースと推論中の自然言語で擬似並列データに基づいて訓練される。
トレーニングと推論のソース差はUNMTモデルの翻訳性能を妨げている。
本稿では、擬似並列データ自然言語を同時に用いたオンライン自己学習手法を提案する。
論文 参考訳(メタデータ) (2022-03-16T04:50:27Z) - Counterfactual Memorization in Neural Language Models [91.8747020391287]
様々なNLPタスクで広く使用されている現代のニューラルネットワークモデルは、トレーニングデータからセンシティブな情報を記憶するリスクがある。
言語モデル記憶の以前の研究におけるオープンな疑問は、「一般的な」記憶の除去方法である。
トレーニング中に特定の文書が省略された場合、モデルの予測がどのように変化するかを特徴付ける反事実記憶の概念を定式化する。
論文 参考訳(メタデータ) (2021-12-24T04:20:57Z) - Training Data Leakage Analysis in Language Models [6.843491191969066]
本稿では,強大かつ現実的な脅威モデルの下で漏洩する可能性のあるトレーニングデータ中のユーザコンテンツを識別する手法を提案する。
本研究では,トレーニングデータに固有の文断片を生成するモデルの能力を測定することにより,ユーザレベルのデータ漏洩を定量化する2つの指標を提案する。
論文 参考訳(メタデータ) (2021-01-14T00:57:32Z) - Extracting Training Data from Large Language Models [78.3839333127544]
本論文では,言語モデルに問い合わせることで,学習データ抽出攻撃を実行して個々のトレーニング例を回復できることを実証する。
我々は,公開インターネットのスクレイプ上で訓練された言語モデルgpt-2に対する攻撃を実証し,モデルのトレーニングデータから数百の動詞のテキストシーケンスを抽出することができることを示した。
論文 参考訳(メタデータ) (2020-12-14T18:39:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。