論文の概要: On the Federated Learning Framework for Cooperative Perception
- arxiv url: http://arxiv.org/abs/2404.17147v4
- Date: Tue, 3 Sep 2024 12:55:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-04 18:30:43.191825
- Title: On the Federated Learning Framework for Cooperative Perception
- Title(参考訳): 協調認知のためのフェデレーション学習フレームワークについて
- Authors: Zhenrong Zhang, Jianan Liu, Xi Zhou, Tao Huang, Qing-Long Han, Jingxin Liu, Hongbin Liu,
- Abstract要約: フェデレーション学習は、コネクテッドおよび自律走行車間の認識、意思決定、計画において、データのプライバシ保護と協調的な拡張を可能にすることで、有望なソリューションを提供する。
本研究では,FedDWAアルゴリズム(Federated dynamic weighted aggregate, FedDWA)と呼ばれる,CPのための特殊な統合学習フレームワークを提案する。
このフレームワークは、動的クライアント重み付けをモデル収束の直接化に利用し、KLD(Kullback-Leibler divergence)を利用して非独立的かつ同一に分散された(Non-IID)データとアンバランスなデータの有害な影響を対処する新しい損失関数を統合する。
- 参考スコア(独自算出の注目度): 28.720571541022245
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cooperative perception is essential to enhance the efficiency and safety of future transportation systems, requiring extensive data sharing among vehicles on the road, which raises significant privacy concerns. Federated learning offers a promising solution by enabling data privacy-preserving collaborative enhancements in perception, decision-making, and planning among connected and autonomous vehicles (CAVs). However, federated learning is impeded by significant challenges arising from data heterogeneity across diverse clients, potentially diminishing model accuracy and prolonging convergence periods. This study introduces a specialized federated learning framework for CP, termed the federated dynamic weighted aggregation (FedDWA) algorithm, facilitated by dynamic adjusting loss (DALoss) function. This framework employs dynamic client weighting to direct model convergence and integrates a novel loss function that utilizes Kullback-Leibler divergence (KLD) to counteract the detrimental effects of non-independently and identically distributed (Non-IID) and unbalanced data. Utilizing the BEV transformer as the primary model, our rigorous testing on the OpenV2V dataset, augmented with FedBEVT data, demonstrates significant improvements in the average intersection over union (IoU). These results highlight the substantial potential of our federated learning framework to address data heterogeneity challenges in CP, thereby enhancing the accuracy of environmental perception models and facilitating more robust and efficient collaborative learning solutions in the transportation sector.
- Abstract(参考訳): 協力的な認識は将来の輸送システムの効率性と安全性を高めるために不可欠であり、道路上の車両間での広範なデータ共有が必要であり、プライバシー上の懸念を生じさせる。
フェデレーション学習は、コネクテッドおよび自律走行車(CAV)間の知覚、意思決定、計画における、データのプライバシ保護による協調的な強化を可能にすることで、有望なソリューションを提供する。
しかし、フェデレート学習は、多様なクライアント間のデータの均一性から生じる重大な課題によって妨げられ、モデルの精度が低下し、収束期間が長くなる可能性がある。
本研究では, 動的調整損失(DALoss)関数によって促進されるFedDWAアルゴリズム(Federated dynamic weighted aggregate, FedDWA)と呼ばれる, CPのための特殊な連合学習フレームワークを提案する。
このフレームワークは、動的クライアント重み付けをモデル収束の直接化に利用し、KLD(Kullback-Leibler divergence)を利用して非独立かつ同一に分散された(Non-IID)データと不均衡なデータの有害な影響を対処する新しい損失関数を統合する。
BEV変換器を主モデルとして、FedBEVTデータで拡張したOpenV2Vデータセットの厳密なテストを行い、結合平均交差(IoU)が大幅に改善されたことを示す。
これらの結果は,CPにおけるデータ不均一性問題に対処し,環境認識モデルの精度を高め,交通セクターにおけるより堅牢で効率的な協調学習ソリューションを実現するための,我々の連合学習フレームワークの実質的な可能性を強調した。
関連論文リスト
- When Swarm Learning meets energy series data: A decentralized collaborative learning design based on blockchain [10.099134773737939]
機械学習モデルは、将来のエネルギー生産または消費を予測する機能を提供する。
しかし、特定のエネルギーセクター内の法と政策の制約は、様々な情報源のデータを利用する際に技術的ハードルをもたらす。
本稿では,集中型サーバをブロックチェーンベースの分散ネットワークに置き換えるSwarm Learningスキームを提案する。
論文 参考訳(メタデータ) (2024-06-07T08:42:26Z) - Task-agnostic Decision Transformer for Multi-type Agent Control with Federated Split Training [34.80971707794908]
Federated Split Decision Transformer (FSDT)は、AIエージェント決定タスク用に明示的に設計された革新的なフレームワークである。
FSDTフレームワークは、トレーニングに分散データを活用することで、パーソナライズされたエージェントの複雑さをナビゲートする。
本研究は、分散オフライン強化学習データを効果的に活用し、強力なマルチタイプエージェント決定システムを実現するためのFSDTフレームワークの有効性を裏付けるものである。
論文 参考訳(メタデータ) (2024-05-22T08:37:37Z) - FedCAda: Adaptive Client-Side Optimization for Accelerated and Stable Federated Learning [57.38427653043984]
フェデレートラーニング(FL)は、分散クライアント間の機械学習モデルの協調トレーニングにおいて、顕著なアプローチとして登場した。
我々は,この課題に対処するために設計された,革新的なクライアント適応アルゴリズムであるFedCAdaを紹介する。
我々はFedCAdaが適応性、収束性、安定性、全体的な性能の点で最先端の手法より優れていることを実証する。
論文 参考訳(メタデータ) (2024-05-20T06:12:33Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
フェデレートされた学習は、微調整された特徴をスキイングし、モデルの堅牢性を損なうリスクがある。
3つのロバスト性指標を導入し、多様なロバストデータセットで実験を行う。
提案手法は,パラメータ効率のよい微調整手法を含む多種多様なシナリオにまたがるロバスト性を著しく向上させる。
論文 参考訳(メタデータ) (2024-01-25T09:18:51Z) - FRAMU: Attention-based Machine Unlearning using Federated Reinforcement
Learning [16.86560475992975]
FRAMU(Federated Reinforcement Learning)を用いた注意型機械学習について紹介する。
FRAMUには適応学習機構、プライバシー保護技術、最適化戦略が組み込まれている。
実験の結果,FRAMUはベースラインモデルよりも有意に優れていた。
論文 参考訳(メタデータ) (2023-09-19T03:13:17Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
本稿では、データの不均一性を考慮した無線FLの性能解析と最適化と、無線リソース割り当てについて述べる。
ロス関数の最小化問題を、長期エネルギー消費と遅延の制約の下で定式化し、クライアントスケジューリング、リソース割り当て、ローカルトレーニングエポック数(CRE)を共同で最適化する。
実世界のデータセットの実験により、提案アルゴリズムは学習精度とエネルギー消費の点で他のベンチマークよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-08-04T04:18:01Z) - Combating Exacerbated Heterogeneity for Robust Models in Federated
Learning [91.88122934924435]
対人訓練と連合学習の組み合わせは、望ましくない頑丈さの劣化につながる可能性がある。
我々は、Slack Federated Adversarial Training (SFAT)と呼ばれる新しいフレームワークを提案する。
各種ベンチマークおよび実世界のデータセットに対するSFATの合理性と有効性を検証する。
論文 参考訳(メタデータ) (2023-03-01T06:16:15Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
フェデレートラーニング(FL)は近年、学術や産業から注目を集めている。
我々は,複数の局所的代理関数からグローバルなトレーニング目標を構築するためのFedDMを提案する。
そこで本研究では,各クライアントにデータ集合を構築し,元のデータから得られた損失景観を局所的にマッチングする。
論文 参考訳(メタデータ) (2022-07-20T04:55:18Z) - Semi-asynchronous Hierarchical Federated Learning for Cooperative
Intelligent Transportation Systems [10.257042901204528]
コラボレーティブ・インテリジェント・トランスポート・システム(C-ITS)は、自動運転車や道路インフラの安全性、効率性、持続可能性、快適なサービスを提供する有望なネットワークである。
C-ITSのコンポーネントは通常大量のデータを生成するため、データサイエンスを探索することは困難である。
本稿では,C-ITSのためのSemi-a synchronous Federated Learning (SHFL) フレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-18T07:44:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。