Phase-aggregated Dual-branch Network for Efficient Fingerprint Dense Registration
- URL: http://arxiv.org/abs/2404.17159v1
- Date: Fri, 26 Apr 2024 05:06:53 GMT
- Title: Phase-aggregated Dual-branch Network for Efficient Fingerprint Dense Registration
- Authors: Xiongjun Guan, Jianjiang Feng, Jie Zhou,
- Abstract summary: Fingerprint dense registration aims to finely align fingerprint pairs at the pixel level, thereby reducing intra-class differences caused by distortion.
Traditional methods exhibited subpar performance when dealing with low-quality fingerprints.
Deep learning based approaches shows significant improvement in these aspects, but their registration accuracy is still unsatisfactory.
- Score: 34.16169623776737
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fingerprint dense registration aims to finely align fingerprint pairs at the pixel level, thereby reducing intra-class differences caused by distortion. Unfortunately, traditional methods exhibited subpar performance when dealing with low-quality fingerprints while suffering from slow inference speed. Although deep learning based approaches shows significant improvement in these aspects, their registration accuracy is still unsatisfactory. In this paper, we propose a Phase-aggregated Dual-branch Registration Network (PDRNet) to aggregate the advantages of both types of methods. A dual-branch structure with multi-stage interactions is introduced between correlation information at high resolution and texture feature at low resolution, to perceive local fine differences while ensuring global stability. Extensive experiments are conducted on more comprehensive databases compared to previous works. Experimental results demonstrate that our method reaches the state-of-the-art registration performance in terms of accuracy and robustness, while maintaining considerable competitiveness in efficiency.
Related papers
- A Robust Algorithm for Contactless Fingerprint Enhancement and Matching [7.820996917431323]
contactless fingerprint images exhibit four distinct characteristics.
They contain less noise, have fewer discontinuities in ridge patterns, and pose an interoperability problem.
We propose a novel contactless fingerprint identification solution that enhances the accuracy of minutiae detection.
arXiv Detail & Related papers (2024-08-18T10:01:42Z) - Towards Saner Deep Image Registration [27.293910167327084]
This paper investigates behaviors for popular learning-based deep registrations under a sanity-checking microscope.
We find that most existing registrations suffer from low inverse consistency and nondiscrimination of identical pairs due to overly optimized image similarities.
We propose a novel regularization-based sanity-enforcer method that imposes two sanity checks on the deep model to reduce its inverse consistency errors and increase its discriminative power simultaneously.
arXiv Detail & Related papers (2023-07-19T00:41:39Z) - NSNet: Non-saliency Suppression Sampler for Efficient Video Recognition [89.84188594758588]
A novel Non-saliency Suppression Network (NSNet) is proposed to suppress the responses of non-salient frames.
NSNet achieves the state-of-the-art accuracy-efficiency trade-off and presents a significantly faster (2.44.3x) practical inference speed than state-of-the-art methods.
arXiv Detail & Related papers (2022-07-21T09:41:22Z) - Voxelmorph++ Going beyond the cranial vault with keypoint supervision
and multi-channel instance optimisation [8.88841928746097]
Recent Learn2Reg benchmark shows single-scale U-Net architectures fall short of state-of-the-art performance for abdominal or intra-patient lung registration.
Here, we propose two straightforward steps that greatly reduce this gap in accuracy.
First, we employ keypoint self-supervision with a novel network head that predicts a discretised heatmap.
Second, we replace multiple learned fine-tuning steps by a single instance with hand-crafted features and the Adam optimiser.
arXiv Detail & Related papers (2022-02-28T19:23:29Z) - Domain Adaptation for Underwater Image Enhancement [51.71570701102219]
We propose a novel Two-phase Underwater Domain Adaptation network (TUDA) to minimize the inter-domain and intra-domain gap.
In the first phase, a new dual-alignment network is designed, including a translation part for enhancing realism of input images, followed by an enhancement part.
In the second phase, we perform an easy-hard classification of real data according to the assessed quality of enhanced images, where a rank-based underwater quality assessment method is embedded.
arXiv Detail & Related papers (2021-08-22T06:38:19Z) - Semi-supervised Long-tailed Recognition using Alternate Sampling [95.93760490301395]
Main challenges in long-tailed recognition come from the imbalanced data distribution and sample scarcity in its tail classes.
We propose a new recognition setting, namely semi-supervised long-tailed recognition.
We demonstrate significant accuracy improvements over other competitive methods on two datasets.
arXiv Detail & Related papers (2021-05-01T00:43:38Z) - Cascaded Feature Warping Network for Unsupervised Medical Image
Registration [11.052668687673998]
We pre-sent a cascaded feature warping network to perform the coarse-to-fine registration.
A shared-weights encoder network is adopted to generate the feature pyramids for the unaligned images.
The results show that our method outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2021-03-15T08:50:06Z) - Manifold Regularized Dynamic Network Pruning [102.24146031250034]
This paper proposes a new paradigm that dynamically removes redundant filters by embedding the manifold information of all instances into the space of pruned networks.
The effectiveness of the proposed method is verified on several benchmarks, which shows better performance in terms of both accuracy and computational cost.
arXiv Detail & Related papers (2021-03-10T03:59:03Z) - Latent Fingerprint Registration via Matching Densely Sampled Points [100.53031290339483]
Existing latent fingerprint registration approaches are mainly based on establishing correspondences between minutiae.
We propose a non-minutia latent fingerprint registration method which estimates the spatial transformation between a pair of fingerprints.
The proposed method achieves the state-of-the-art registration performance, especially under challenging conditions.
arXiv Detail & Related papers (2020-05-12T15:51:59Z) - Dense Registration and Mosaicking of Fingerprints by Training an
End-to-End Network [36.50244665233824]
We train an end-to-end network to output pixel-wise displacement field between two fingerprints.
We also propose a fingerprint mosaicking method based on optimal seam selection.
Our registration method outperforms previous dense registration methods in accuracy and efficiency.
arXiv Detail & Related papers (2020-04-13T14:47:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.