論文の概要: Enhancing Privacy and Security of Autonomous UAV Navigation
- arxiv url: http://arxiv.org/abs/2404.17225v1
- Date: Fri, 26 Apr 2024 07:54:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-29 13:44:15.344360
- Title: Enhancing Privacy and Security of Autonomous UAV Navigation
- Title(参考訳): 自律型UAVナビゲーションのプライバシとセキュリティ向上
- Authors: Vatsal Aggarwal, Arjun Ramesh Kaushik, Charanjit Jutla, Nalini Ratha,
- Abstract要約: 国境警備や災害対応といった重要なシナリオでは、自律型無人機の安全な航行が最重要である。
本稿では,RL(Reinforcement Learning)とFHE(Fully Homomorphic Encryption)を組み合わせて,自律型UAVナビゲーションを実現する革新的な手法を提案する。
提案手法により,自律型UAVナビゲーションにおけるセキュリティとプライバシが保証され,性能が損なわれない。
- 参考スコア(独自算出の注目度): 0.8512184778338805
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous Unmanned Aerial Vehicles (UAVs) have become essential tools in defense, law enforcement, disaster response, and product delivery. These autonomous navigation systems require a wireless communication network, and of late are deep learning based. In critical scenarios such as border protection or disaster response, ensuring the secure navigation of autonomous UAVs is paramount. But, these autonomous UAVs are susceptible to adversarial attacks through the communication network or the deep learning models - eavesdropping / man-in-the-middle / membership inference / reconstruction. To address this susceptibility, we propose an innovative approach that combines Reinforcement Learning (RL) and Fully Homomorphic Encryption (FHE) for secure autonomous UAV navigation. This end-to-end secure framework is designed for real-time video feeds captured by UAV cameras and utilizes FHE to perform inference on encrypted input images. While FHE allows computations on encrypted data, certain computational operators are yet to be implemented. Convolutional neural networks, fully connected neural networks, activation functions and OpenAI Gym Library are meticulously adapted to the FHE domain to enable encrypted data processing. We demonstrate the efficacy of our proposed approach through extensive experimentation. Our proposed approach ensures security and privacy in autonomous UAV navigation with negligible loss in performance.
- Abstract(参考訳): 無人航空機(UAV)は、防衛、法執行、災害対応、製品提供において欠かせない道具となっている。
これらの自律ナビゲーションシステムは無線通信ネットワークを必要としており、最近ではディープラーニングベースになっている。
国境警備や災害対応といった重要なシナリオでは、自律型無人機の安全な航行が最重要である。
しかし、これらの自律型UAVは、通信ネットワークやディープラーニングモデルを通じて敵の攻撃を受けやすい。
そこで本研究では,RL(Reinforcement Learning)とFHE(Fully Homomorphic Encryption)を組み合わせて,自律型UAVナビゲーションを実現する革新的な手法を提案する。
このエンドツーエンドのセキュアなフレームワークは、UAVカメラが捉えたリアルタイムビデオフィード用に設計されており、FHEを使用して暗号化された入力画像の推論を行う。
FHEは暗号化データ上での計算を可能にするが、特定の演算子はまだ実装されていない。
畳み込みニューラルネットワーク、完全に接続されたニューラルネットワーク、アクティベーション関数、OpenAI Gymライブラリは、暗号化されたデータ処理を可能にするために、FHEドメインに慎重に適合する。
提案手法の有効性を広範囲な実験により実証する。
提案手法により,自律型UAVナビゲーションにおけるセキュリティとプライバシが保証され,性能が損なわれない。
関連論文リスト
- Towards Building Secure UAV Navigation with FHE-aware Knowledge Distillation [0.0]
本稿では,セキュアなUAVナビゲーションの実現性を高めるため,知識蒸留を活用した革新的なアプローチを提案する。
RLとFHEを統合することで、我々のフレームワークは、暗号化されたUAVカメラフィードのリアルタイム処理を可能にしながら、敵攻撃に対する脆弱性に対処する。
FHEのレイテンシを軽減するために、知識蒸留を用いてネットワークを圧縮し、性能を損なうことなく18倍のスピードアップを実現している。
論文 参考訳(メタデータ) (2024-11-01T07:04:24Z) - Machine Learning-Based Malicious Vehicle Detection for Security Threats
and Attacks in Vehicle Ad-hoc Network (VANET) Communications [0.48951183832371004]
ブラックホール攻撃は自動車アドホックネットワーク(VANET)にとって重要な脅威である
本稿では,VANETにおけるブラックホール検出のための機械学習手法を提案する。
論文 参考訳(メタデータ) (2024-01-16T06:01:02Z) - Convergence of Communications, Control, and Machine Learning for Secure
and Autonomous Vehicle Navigation [78.60496411542549]
接続された自動運転車(CAV)は、交通事故におけるヒューマンエラーを低減し、道路効率を向上し、様々なタスクを実行する。これらのメリットを享受するためには、CAVが目標とする目的地へ自律的にナビゲートする必要がある。
本稿では,通信理論,制御理論,機械学習の収束を利用して,効果的なCAVナビゲーションを実現する手法を提案する。
論文 参考訳(メタデータ) (2023-07-05T21:38:36Z) - VBSF-TLD: Validation-Based Approach for Soft Computing-Inspired Transfer
Learning in Drone Detection [0.0]
本稿では,コンピュータビジョンベースモジュールの不可欠な部分を構成する移動型ドローン検出手法を提案する。
事前学習されたモデルの知識を関連ドメインから活用することにより、限られたトレーニングデータであっても、トランスファー学習によりより良い結果が得られる。
特に、このスキームの有効性は、IOUベースの検証結果によって強調される。
論文 参考訳(メタデータ) (2023-06-11T22:30:23Z) - Automating Privilege Escalation with Deep Reinforcement Learning [71.87228372303453]
本研究では,エージェントの訓練に深層強化学習を用いることで,悪意あるアクターの潜在的な脅威を実証する。
本稿では,最先端の強化学習アルゴリズムを用いて,局所的な特権エスカレーションを行うエージェントを提案する。
我々のエージェントは、実際の攻撃センサーデータを生成し、侵入検知システムの訓練と評価に利用できる。
論文 参考訳(メタデータ) (2021-10-04T12:20:46Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
我々は、攻撃者が汎用人工知能システムにおける決定を制御できる新しい敵の摂動について研究する。
敵対的なデータ修正とは対照的に、ここで考慮する攻撃メカニズムには、AIシステム自体の変更が含まれる。
論文 参考訳(メタデータ) (2021-06-26T10:50:07Z) - Artificial Intelligence for UAV-enabled Wireless Networks: A Survey [72.10851256475742]
無人航空機(UAV)は次世代無線通信ネットワークにおいて有望な技術であると考えられている。
人工知能(AI)は近年急速に成長し、成功している。
UAVベースのネットワークにおけるAIの潜在的な応用について概観する。
論文 参考訳(メタデータ) (2020-09-24T07:11:31Z) - Open-set Adversarial Defense [93.25058425356694]
オープンセット認識システムは敵攻撃に対して脆弱であることを示す。
本研究の目的は,OSAD(Open-Set Adrial Defense, Open-Set Adrial Defense)機構の必要性である。
本稿はOSAD問題に対する解決策として,OSDN(Open-Set Defense Network)を提案する。
論文 参考訳(メタデータ) (2020-09-02T04:35:33Z) - UAV Path Planning for Wireless Data Harvesting: A Deep Reinforcement
Learning Approach [18.266087952180733]
本稿では,IoT(Internet of Things)デバイスからのUAV対応データ収集に対するエンドツーエンド強化学習手法を提案する。
自律ドローンは、限られた飛行時間と障害物回避を受ける分散センサーノードからデータを収集する。
提案するネットワークアーキテクチャにより,エージェントが様々なシナリオパラメータの移動決定を行うことができることを示す。
論文 参考訳(メタデータ) (2020-07-01T15:14:16Z) - Simultaneous Navigation and Radio Mapping for Cellular-Connected UAV
with Deep Reinforcement Learning [46.55077580093577]
空のUAVに対して、ユビキタスな3Dコミュニケーションを実現するには、新しい課題だ。
本稿では,UAVの制御可能な移動性を利用して航法・軌道を設計する新しい航法手法を提案する。
そこで我々は,UAVの信号計測を深部Qネットワークのトレーニングに用いるSNARM (Concurrent Navigation and Radio Mapping) という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-17T08:16:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。