論文の概要: Comparison of self-supervised in-domain and supervised out-domain transfer learning for bird species recognition
- arxiv url: http://arxiv.org/abs/2404.17252v1
- Date: Fri, 26 Apr 2024 08:47:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-29 13:34:31.385978
- Title: Comparison of self-supervised in-domain and supervised out-domain transfer learning for bird species recognition
- Title(参考訳): 鳥類種認識のための自己教師付き内ドメインと教師付き外ドメイン移動学習の比較
- Authors: Houtan Ghaffari, Paul Devos,
- Abstract要約: 別のタスクを支援するために事前訓練されたモデルの重みを移すことは、現代のディープラーニングの重要な部分となっている。
本実験は,鳥種認識のためのドメイン内モデルとデータセットの有用性を実証するものである。
- 参考スコア(独自算出の注目度): 0.19183348587701113
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Transferring the weights of a pre-trained model to assist another task has become a crucial part of modern deep learning, particularly in data-scarce scenarios. Pre-training refers to the initial step of training models outside the current task of interest, typically on another dataset. It can be done via supervised models using human-annotated datasets or self-supervised models trained on unlabeled datasets. In both cases, many pre-trained models are available to fine-tune for the task of interest. Interestingly, research has shown that pre-trained models from ImageNet can be helpful for audio tasks despite being trained on image datasets. Hence, it's unclear whether in-domain models would be advantageous compared to competent out-domain models, such as convolutional neural networks from ImageNet. Our experiments will demonstrate the usefulness of in-domain models and datasets for bird species recognition by leveraging VICReg, a recent and powerful self-supervised method.
- Abstract(参考訳): 別のタスクを支援するために事前訓練されたモデルの重みを移すことは、特にデータスキャンのシナリオにおいて、現代のディープラーニングの重要な部分となっている。
事前トレーニング(Pre-training)とは、現在の関心のあるタスク、通常は別のデータセットの外でモデルをトレーニングする最初のステップを指す。
これは、人間のアノテーション付きデータセットまたはラベルなしデータセットでトレーニングされた自己教師付きモデルを使用して、教師付きモデルを通じて行うことができる。
どちらの場合も、多くの事前訓練されたモデルは興味のあるタスクのために微調整が可能である。
興味深いことに、ImageNetから事前トレーニングされたモデルは、画像データセットでトレーニングされているにもかかわらず、オーディオタスクに役立つことが研究で示されている。
したがって、ImageNetの畳み込みニューラルネットワークのような競合する外部ドメインモデルと比較して、ドメイン内のモデルが有利であるかどうかは不明だ。
鳥種認識におけるドメイン内モデルとデータセットの有用性を,最近かつ強力な自己管理手法であるVICRegを用いて実証する。
関連論文リスト
- Regularized Training with Generated Datasets for Name-Only Transfer of Vision-Language Models [36.59260354292177]
近年のテキスト・画像生成の進歩により、研究者は生成モデルを用いて知覚モデルに適したデータセットを生成するようになった。
我々は、実際の画像にアクセスせずに、視覚言語モデルを特定の分類モデルに微調整することを目指している。
生成した画像の忠実度が高いにもかかわらず、生成したデータセットを用いてモデルを微調整すると、顕著な性能劣化が観測された。
論文 参考訳(メタデータ) (2024-06-08T10:43:49Z) - Diffusion-based Neural Network Weights Generation [85.6725307453325]
データセット条件付き事前学習重み抽出による効率よく適応的な伝達学習手法を提案する。
具体的には、ニューラルネットワークの重みを再構築できる変分オートエンコーダを備えた潜時拡散モデルを用いる。
論文 参考訳(メタデータ) (2024-02-28T08:34:23Z) - Fantastic Gains and Where to Find Them: On the Existence and Prospect of
General Knowledge Transfer between Any Pretrained Model [74.62272538148245]
事前訓練されたモデルの任意のペアリングに対して、一方のモデルは他方では利用できない重要なデータコンテキストを抽出する。
このような「補的」な知識を,性能劣化を伴わずに,あるモデルから別のモデルへ伝達できるかどうかを検討する。
論文 参考訳(メタデータ) (2023-10-26T17:59:46Z) - Toward a Foundation Model for Time Series Data [34.1973242428317]
基礎モデルは、大規模で多様なデータセットに基づいてトレーニングされた機械学習モデルである。
複数のドメインのラベルのないサンプルを活用することで,効率的な時系列基礎モデルを構築する。
論文 参考訳(メタデータ) (2023-10-05T21:44:50Z) - TRAK: Attributing Model Behavior at Scale [79.56020040993947]
本稿では,大規模な微分モデルに対して有効かつ計算的に抽出可能なデータ属性法であるTRAK(Tracing with Randomly-trained After Kernel)を提案する。
論文 参考訳(メタデータ) (2023-03-24T17:56:22Z) - Variation of Gender Biases in Visual Recognition Models Before and After
Finetuning [29.55318393877906]
本稿では,下流タスクにおける大規模視覚認識モデルの微調整前後のバイアスの変化を計測するフレームワークを提案する。
ImageNet-21kのようなデータセットでトレーニングされた教師付きモデルは、事前学習されたバイアスを保持する傾向にある。
また、大規模データセットに微調整されたモデルでは、新しいバイアス付きアソシエーションを導入する可能性が高くなることもわかりました。
論文 参考訳(メタデータ) (2023-03-14T03:42:47Z) - Synthetic Model Combination: An Instance-wise Approach to Unsupervised
Ensemble Learning [92.89846887298852]
ラベル付きデータのトレーニングセットから学ぶ機会のない、新しいテストデータに対する予測を検討する。
専門家モデルのセットと予測へのアクセスと、トレーニングに使用するデータセットに関する制限された情報を提供すること。
論文 参考訳(メタデータ) (2022-10-11T10:20:31Z) - Revealing Secrets From Pre-trained Models [2.0249686991196123]
トランスファーラーニングは多くの新しいディープラーニングアルゴリズムで広く採用されている。
本研究では,事前学習モデルと微調整モデルが重み値に非常によく似ていることを示す。
ブラックボックスの被害者モデルで使用されるモデルアーキテクチャと事前訓練モデルを明らかにするモデル抽出攻撃を提案する。
論文 参考訳(メタデータ) (2022-07-19T20:19:03Z) - KNN-Diffusion: Image Generation via Large-Scale Retrieval [40.6656651653888]
適応する学習は、いくつかの新しい機能を可能にします。
微調整の訓練されたモデルと新しいサンプルは、単にテーブルに追加するだけで実現できる。
我々の拡散モデルでは、共同のテキスト・イメージ・マルチモーダル・メトリックを利用することで、画像のみを訓練する。
論文 参考訳(メタデータ) (2022-04-06T14:13:35Z) - Self-supervised Audiovisual Representation Learning for Remote Sensing
Data [70.64030011999981]
遠隔センシングにおける深層ニューラルネットワークの事前学習のための自己教師型アプローチを提案する。
ジオタグ付きオーディオ記録とリモートセンシングの対応を利用して、これは完全にラベルなしの方法で行われる。
提案手法は,既存のリモートセンシング画像の事前学習方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-08-02T07:50:50Z) - Adversarially-Trained Deep Nets Transfer Better: Illustration on Image
Classification [53.735029033681435]
トランスファーラーニングは、訓練済みのディープニューラルネットワークを画像認識タスクに新しいドメインに適用するための強力な方法論である。
本研究では,非逆学習モデルよりも逆学習モデルの方が優れていることを示す。
論文 参考訳(メタデータ) (2020-07-11T22:48:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。