論文の概要: Transfer Learning for Passive Sonar Classification using Pre-trained Audio and ImageNet Models
- arxiv url: http://arxiv.org/abs/2409.13878v1
- Date: Fri, 20 Sep 2024 20:13:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 04:50:50.822977
- Title: Transfer Learning for Passive Sonar Classification using Pre-trained Audio and ImageNet Models
- Title(参考訳): 事前学習音声と画像ネットモデルを用いた受動ソナー分類のための伝達学習
- Authors: Amirmohammad Mohammadi, Tejashri Kelhe, Davelle Carreiro, Alexandra Van Dine, Joshua Peeples,
- Abstract要約: 本研究では,事前学習型Audio Neural Networks(PANNs)とImageNet事前学習型モデルを比較した。
また, 受動的ソナー分類において, ImageNet事前学習モデルの方が若干優れていた。
- 参考スコア(独自算出の注目度): 39.85805843651649
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transfer learning is commonly employed to leverage large, pre-trained models and perform fine-tuning for downstream tasks. The most prevalent pre-trained models are initially trained using ImageNet. However, their ability to generalize can vary across different data modalities. This study compares pre-trained Audio Neural Networks (PANNs) and ImageNet pre-trained models within the context of underwater acoustic target recognition (UATR). It was observed that the ImageNet pre-trained models slightly out-perform pre-trained audio models in passive sonar classification. We also analyzed the impact of audio sampling rates for model pre-training and fine-tuning. This study contributes to transfer learning applications of UATR, illustrating the potential of pre-trained models to address limitations caused by scarce, labeled data in the UATR domain.
- Abstract(参考訳): 転送学習は、大規模で事前訓練されたモデルを活用し、下流タスクの微調整を行うために一般的に使用される。
最も一般的な事前トレーニングモデルは当初、ImageNetを使ってトレーニングされている。
しかし、それらの一般化能力は様々なデータモダリティにまたがる可能性がある。
本研究では、水中音響目標認識(UATR)の文脈において、事前学習された音声ニューラルネットワーク(PANN)とImageNetの事前学習モデルを比較した。
また, 受動的ソナー分類において, ImageNet事前学習モデルの方が若干優れていた。
また,モデル事前学習と微調整におけるサンプリングレートの影響についても検討した。
本研究は,UATR領域におけるラベル付きデータ不足による制約に対処するために,事前学習モデルの可能性を示す,UATRの伝達学習応用に寄与する。
関連論文リスト
- Self-Supervised Radio Pre-training: Toward Foundational Models for Spectrogram Learning [6.1339395157466425]
Foundational Deep Learning(DL)モデルは、多種多様で多様なデータセットに基づいてトレーニングされた一般的なモデルである。
本稿では,無線信号を用いた基礎DLモデルの事前学習のための,新しい自己教師型学習手法であるMasked Spectrogram Modelingを紹介する。
論文 参考訳(メタデータ) (2024-11-14T23:56:57Z) - Comparison of self-supervised in-domain and supervised out-domain transfer learning for bird species recognition [0.19183348587701113]
別のタスクを支援するために事前訓練されたモデルの重みを移すことは、現代のディープラーニングの重要な部分となっている。
本実験は,鳥種認識のためのドメイン内モデルとデータセットの有用性を実証するものである。
論文 参考訳(メタデータ) (2024-04-26T08:47:28Z) - Learning with Noisy Foundation Models [95.50968225050012]
本論文は、事前学習データセットにおけるノイズの性質を包括的に理解し分析する最初の研究である。
雑音の悪影響を緩和し、一般化を改善するため、特徴空間に適応するチューニング法(NMTune)を提案する。
論文 参考訳(メタデータ) (2024-03-11T16:22:41Z) - Leveraging Pre-Trained Autoencoders for Interpretable Prototype Learning
of Music Audio [10.946347283718923]
本稿では,プロトタイプ学習に基づく音楽音声分類のための解釈可能なモデルPECMAEを提案する。
我々のモデルは,オートエンコーダとプロトタイプネットワークを共同で学習する先行手法であるAPNetに基づいている。
プロトタイプベースのモデルはオートエンコーダの埋め込みによって達成された性能の大部分を保っていることがわかった。
論文 参考訳(メタデータ) (2024-02-14T17:13:36Z) - Understanding and Mitigating the Label Noise in Pre-training on
Downstream Tasks [91.15120211190519]
本稿では、事前学習データセットにおけるノイズの性質を理解し、下流タスクへの影響を軽減することを目的とする。
雑音の悪影響を軽減するために特徴空間に適応する軽量ブラックボックスチューニング法(NMTune)を提案する。
論文 参考訳(メタデータ) (2023-09-29T06:18:15Z) - Self-supervised Audiovisual Representation Learning for Remote Sensing Data [96.23611272637943]
遠隔センシングにおける深層ニューラルネットワークの事前学習のための自己教師型アプローチを提案する。
ジオタグ付きオーディオ記録とリモートセンシングの対応を利用して、これは完全にラベルなしの方法で行われる。
提案手法は,既存のリモートセンシング画像の事前学習方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-08-02T07:50:50Z) - Unsupervised Discriminative Learning of Sounds for Audio Event
Classification [43.81789898864507]
ネットワークベースの音声イベント分類は、ImageNetのようなビジュアルデータに対する事前学習モデルの利点を示している。
我々は,教師なしモデルの事前トレーニングを音声データのみに限定し,ImageNetの事前トレーニングによるオンパーパフォーマンスを実現する,高速で効果的な代替手段を示す。
論文 参考訳(メタデータ) (2021-05-19T17:42:03Z) - Self-Supervised Pretraining Improves Self-Supervised Pretraining [83.1423204498361]
自己教師付き事前トレーニングには、高価で長い計算と大量のデータが必要で、データ拡張に敏感である。
本稿では,既存の事前学習モデルを用いて事前学習プロセスを初期化することにより,収束時間を短縮し,精度を向上させる階層的事前学習(HPT)について検討する。
HPTが最大80倍速く収束し、タスク全体の精度が向上し、自己監視された事前トレーニングプロセスの堅牢性が、画像増強ポリシーまたは事前トレーニングデータの量の変化に改善されることを示します。
論文 参考訳(メタデータ) (2021-03-23T17:37:51Z) - The Lottery Tickets Hypothesis for Supervised and Self-supervised
Pre-training in Computer Vision Models [115.49214555402567]
事前訓練された重量は、しばしば分類、検出、セグメンテーションを含む幅広い下流タスクを増加させる。
最近の研究は、巨大モデル能力による事前学習の利点を示唆している。
本稿では,抽選券仮説(LTH)のレンズを用いて,教師付きおよび自己指導型事前学習モデルについて検討する。
論文 参考訳(メタデータ) (2020-12-12T21:53:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。