ExcluIR: Exclusionary Neural Information Retrieval
- URL: http://arxiv.org/abs/2404.17288v1
- Date: Fri, 26 Apr 2024 09:43:40 GMT
- Title: ExcluIR: Exclusionary Neural Information Retrieval
- Authors: Wenhao Zhang, Mengqi Zhang, Shiguang Wu, Jiahuan Pei, Zhaochun Ren, Maarten de Rijke, Zhumin Chen, Pengjie Ren,
- Abstract summary: We present ExcluIR, a set of resources for exclusionary retrieval.
evaluation benchmark includes 3,452 high-quality exclusionary queries.
training set contains 70,293 exclusionary queries, each paired with a positive document and a negative document.
- Score: 74.08276741093317
- License:
- Abstract: Exclusion is an important and universal linguistic skill that humans use to express what they do not want. However, in information retrieval community, there is little research on exclusionary retrieval, where users express what they do not want in their queries. In this work, we investigate the scenario of exclusionary retrieval in document retrieval for the first time. We present ExcluIR, a set of resources for exclusionary retrieval, consisting of an evaluation benchmark and a training set for helping retrieval models to comprehend exclusionary queries. The evaluation benchmark includes 3,452 high-quality exclusionary queries, each of which has been manually annotated. The training set contains 70,293 exclusionary queries, each paired with a positive document and a negative document. We conduct detailed experiments and analyses, obtaining three main observations: (1) Existing retrieval models with different architectures struggle to effectively comprehend exclusionary queries; (2) Although integrating our training data can improve the performance of retrieval models on exclusionary retrieval, there still exists a gap compared to human performance; (3) Generative retrieval models have a natural advantage in handling exclusionary queries. To facilitate future research on exclusionary retrieval, we share the benchmark and evaluation scripts on \url{https://github.com/zwh-sdu/ExcluIR}.
Related papers
- JudgeRank: Leveraging Large Language Models for Reasoning-Intensive Reranking [81.88787401178378]
We introduce JudgeRank, a novel agentic reranker that emulates human cognitive processes when assessing document relevance.
We evaluate JudgeRank on the reasoning-intensive BRIGHT benchmark, demonstrating substantial performance improvements over first-stage retrieval methods.
In addition, JudgeRank performs on par with fine-tuned state-of-the-art rerankers on the popular BEIR benchmark, validating its zero-shot generalization capability.
arXiv Detail & Related papers (2024-10-31T18:43:12Z) - QUIDS: Query Intent Generation via Dual Space Modeling [12.572815037915348]
We propose a dual-space model that uses semantic relevance and irrelevance information in the returned documents to explain the understanding of the query intent.
Our methods produce high-quality query intent descriptions, outperforming existing methods for this task, as well as state-of-the-art query-based summarization methods.
arXiv Detail & Related papers (2024-10-16T09:28:58Z) - Open-World Evaluation for Retrieving Diverse Perspectives [39.22331280176582]
We curate a Benchmark for Retrieval Diversity for Subjective questions (BERDS)
Each example consists of a question and diverse perspectives associated with the question.
We build a language model based automatic evaluator that decides whether each retrieved document contains a perspective.
arXiv Detail & Related papers (2024-09-26T17:52:57Z) - BRIGHT: A Realistic and Challenging Benchmark for Reasoning-Intensive Retrieval [54.54576644403115]
Many complex real-world queries require in-depth reasoning to identify relevant documents.
We introduce BRIGHT, the first text retrieval benchmark that requires intensive reasoning to retrieve relevant documents.
Our dataset consists of 1,384 real-world queries spanning diverse domains, such as economics, psychology, mathematics, and coding.
arXiv Detail & Related papers (2024-07-16T17:58:27Z) - Dense X Retrieval: What Retrieval Granularity Should We Use? [56.90827473115201]
Often-overlooked design choice is the retrieval unit in which the corpus is indexed, e.g. document, passage, or sentence.
We introduce a novel retrieval unit, proposition, for dense retrieval.
Experiments reveal that indexing a corpus by fine-grained units such as propositions significantly outperforms passage-level units in retrieval tasks.
arXiv Detail & Related papers (2023-12-11T18:57:35Z) - CAPSTONE: Curriculum Sampling for Dense Retrieval with Document
Expansion [68.19934563919192]
We propose a curriculum sampling strategy that utilizes pseudo queries during training and progressively enhances the relevance between the generated query and the real query.
Experimental results on both in-domain and out-of-domain datasets demonstrate that our approach outperforms previous dense retrieval models.
arXiv Detail & Related papers (2022-12-18T15:57:46Z) - Exposing Query Identification for Search Transparency [69.06545074617685]
We explore the feasibility of approximate exposing query identification (EQI) as a retrieval task by reversing the role of queries and documents in two classes of search systems.
We derive an evaluation metric to measure the quality of a ranking of exposing queries, as well as conducting an empirical analysis focusing on various practical aspects of approximate EQI.
arXiv Detail & Related papers (2021-10-14T20:19:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.