QUIDS: Query Intent Generation via Dual Space Modeling
- URL: http://arxiv.org/abs/2410.12400v2
- Date: Mon, 21 Oct 2024 09:05:47 GMT
- Title: QUIDS: Query Intent Generation via Dual Space Modeling
- Authors: Yumeng Wang, Xiuying Chen, Suzan Verberne,
- Abstract summary: We propose a dual-space model that uses semantic relevance and irrelevance information in the returned documents to explain the understanding of the query intent.
Our methods produce high-quality query intent descriptions, outperforming existing methods for this task, as well as state-of-the-art query-based summarization methods.
- Score: 12.572815037915348
- License:
- Abstract: Query understanding is a crucial component of Information Retrieval (IR), aimed at identifying the underlying search intent of textual queries. However, most existing approaches oversimplify this task into query classification or clustering, which fails to fully capture the nuanced intent behind the query. In this paper, we address the task of query intent generation: to automatically generate detailed and precise intent descriptions for search queries using relevant and irrelevant documents given a query. These intent descriptions can help users understand why the search engine considered the top-ranked documents relevant, and provide more transparency to the retrieval process. We propose a dual-space model that uses semantic relevance and irrelevance information in the returned documents to explain the understanding of the query intent. Specifically, in the encoding process, we project, separate, and distinguish relevant and irrelevant documents in the representation space. Then, we introduce a semantic decoupling model in the novel disentangling space, where the semantics of irrelevant information are removed from the relevant space, ensuring that only the essential and relevant intent is captured. This process refines the understanding of the query and provides more accurate explanations for the search results. Experiments on benchmark data demonstrate that our methods produce high-quality query intent descriptions, outperforming existing methods for this task, as well as state-of-the-art query-based summarization methods. A token-level visualization of attention scores reveals that our model effectively reduces the focus on irrelevant intent topics. Our findings open up promising research and application directions for query intent generation, particularly in exploratory search.
Related papers
- A Counterfactual Explanation Framework for Retrieval Models [4.562474301450839]
We use an optimization framework to solve the question of which words played a role in not being favored by a retrieval model for a particular query.
Our experiments show the effectiveness of our proposed approach in predicting counterfactuals for both statistical (e.g. BM25) and deep-learning-based models.
arXiv Detail & Related papers (2024-09-01T22:33:29Z) - Crafting the Path: Robust Query Rewriting for Information Retrieval [4.252699657665555]
We propose a novel structured query rewriting method called Crafting the Path tailored for retrieval systems.
We demonstrate that our method is less dependent on the internal parameter knowledge of the model and generates queries with fewer factual inaccuracies.
arXiv Detail & Related papers (2024-07-17T13:11:28Z) - BRIGHT: A Realistic and Challenging Benchmark for Reasoning-Intensive Retrieval [54.54576644403115]
Many complex real-world queries require in-depth reasoning to identify relevant documents.
We introduce BRIGHT, the first text retrieval benchmark that requires intensive reasoning to retrieve relevant documents.
Our dataset consists of 1,384 real-world queries spanning diverse domains, such as economics, psychology, mathematics, and coding.
arXiv Detail & Related papers (2024-07-16T17:58:27Z) - ExcluIR: Exclusionary Neural Information Retrieval [74.08276741093317]
We present ExcluIR, a set of resources for exclusionary retrieval.
evaluation benchmark includes 3,452 high-quality exclusionary queries.
training set contains 70,293 exclusionary queries, each paired with a positive document and a negative document.
arXiv Detail & Related papers (2024-04-26T09:43:40Z) - CAPSTONE: Curriculum Sampling for Dense Retrieval with Document
Expansion [68.19934563919192]
We propose a curriculum sampling strategy that utilizes pseudo queries during training and progressively enhances the relevance between the generated query and the real query.
Experimental results on both in-domain and out-of-domain datasets demonstrate that our approach outperforms previous dense retrieval models.
arXiv Detail & Related papers (2022-12-18T15:57:46Z) - Graph Enhanced BERT for Query Understanding [55.90334539898102]
query understanding plays a key role in exploring users' search intents and facilitating users to locate their most desired information.
In recent years, pre-trained language models (PLMs) have advanced various natural language processing tasks.
We propose a novel graph-enhanced pre-training framework, GE-BERT, which can leverage both query content and the query graph.
arXiv Detail & Related papers (2022-04-03T16:50:30Z) - Exposing Query Identification for Search Transparency [69.06545074617685]
We explore the feasibility of approximate exposing query identification (EQI) as a retrieval task by reversing the role of queries and documents in two classes of search systems.
We derive an evaluation metric to measure the quality of a ranking of exposing queries, as well as conducting an empirical analysis focusing on various practical aspects of approximate EQI.
arXiv Detail & Related papers (2021-10-14T20:19:27Z) - Query Understanding via Intent Description Generation [75.64800976586771]
We propose a novel Query-to-Intent-Description (Q2ID) task for query understanding.
Unlike existing ranking tasks which leverage the query and its description to compute the relevance of documents, Q2ID is a reverse task which aims to generate a natural language intent description.
We demonstrate the effectiveness of our model by comparing with several state-of-the-art generation models on the Q2ID task.
arXiv Detail & Related papers (2020-08-25T08:56:40Z) - Deep Search Query Intent Understanding [17.79430887321982]
This paper aims to provide a comprehensive learning framework for modeling query intent under different stages of a search.
We focus on the design for 1) predicting users' intents as they type in queries on-the-fly in typeahead search using character-level models; and 2) accurate word-level intent prediction models for complete queries.
arXiv Detail & Related papers (2020-08-15T18:19:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.