Towards an Approach to Pattern-based Domain-Specific Requirements Engineering
- URL: http://arxiv.org/abs/2404.17338v1
- Date: Fri, 26 Apr 2024 11:38:55 GMT
- Title: Towards an Approach to Pattern-based Domain-Specific Requirements Engineering
- Authors: T. Chuprina, D. Méndez, V. Nigam, M. Reich, A. Schweiger,
- Abstract summary: We propose the Pattern-based Domain-specific Requirements Engineering Approach for the specification of functional and performance requirements.
This approach emerges from an academia-industry collaboration and is our first attempt to frame an approach which allows for analyzing domain knowledge.
Our contribution is two-fold: First, we present a solution to pattern-based domain-specific requirements engineering and its exemplary integration into quality assurance techniques.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Requirements specification patterns have received much attention as they promise to guide the structured specification of natural language requirements. By using them, the intention is to reduce quality problems related to requirements artifacts. Patterns may need to vary in their syntax (e.g. domain details/ parameter incorporation) and semantics according to the particularities of the application domain. However, pattern-based approaches, such as EARS, are designed domain-independently to facilitate their wide adoption across several domains. Little is yet known about how to adopt the principle idea of pattern-based requirements engineering to cover domain-specificity in requirements engineering and, ideally, integrate requirements engineering activities into quality assurance tasks. In this paper, we propose the Pattern-based Domain-specific Requirements Engineering Approach for the specification of functional and performance requirements in a holistic manner. This approach emerges from an academia-industry collaboration and is our first attempt to frame an approach which allows for analyzing domain knowledge and incorporating it into the requirements engineering process enabling automated checks for requirements quality assurance and computer-aided support for system verification. Our contribution is two-fold: First, we present a solution to pattern-based domain-specific requirements engineering and its exemplary integration into quality assurance techniques. Second, we showcase a proof of concept using a tool implementation for the domain of flight controllers for Unmanned Aerial Vehicles. Both shall allow us to outline next steps in our research agenda and foster discussions in this direction.
Related papers
- Unified Language-driven Zero-shot Domain Adaptation [55.64088594551629]
Unified Language-driven Zero-shot Domain Adaptation (ULDA) is a novel task setting.
It enables a single model to adapt to diverse target domains without explicit domain-ID knowledge.
arXiv Detail & Related papers (2024-04-10T16:44:11Z) - Prioritizing Software Requirements Using Large Language Models [3.9422957660677476]
This article focuses on requirements engineering, typically seen as the initial phase of software development.
The challenge of identifying requirements and satisfying all stakeholders within time and budget constraints remains significant.
This study introduces a web-based software tool utilizing AI agents and prompt engineering to automate task prioritization.
arXiv Detail & Related papers (2024-04-05T15:20:56Z) - Automated Process Planning Based on a Semantic Capability Model and SMT [50.76251195257306]
In research of manufacturing systems and autonomous robots, the term capability is used for a machine-interpretable specification of a system function.
We present an approach that combines these two topics: starting from a semantic capability model, an AI planning problem is automatically generated.
arXiv Detail & Related papers (2023-12-14T10:37:34Z) - Natural Language Processing for Requirements Formalization: How to
Derive New Approaches? [0.32885740436059047]
We present and discuss principal ideas and state-of-the-art methodologies from the field of NLP.
We discuss two different approaches in detail and highlight the iterative development of rule sets.
The presented methods are demonstrated on two industrial use cases from the automotive and railway domains.
arXiv Detail & Related papers (2023-09-23T05:45:19Z) - A General Framework for Verification and Control of Dynamical Models via Certificate Synthesis [54.959571890098786]
We provide a framework to encode system specifications and define corresponding certificates.
We present an automated approach to formally synthesise controllers and certificates.
Our approach contributes to the broad field of safe learning for control, exploiting the flexibility of neural networks.
arXiv Detail & Related papers (2023-09-12T09:37:26Z) - Domain-Specificity Inducing Transformers for Source-Free Domain
Adaptation [34.533493057674974]
We build a framework that supports disentanglement and learning of domain-specific factors and task-specific factors.
We are the first to utilize vision transformers for domain adaptation in a privacy-oriented source-free setting.
arXiv Detail & Related papers (2023-08-27T07:04:51Z) - Model-based Analysis and Specification of Functional Requirements and
Tests for Complex Automotive Systems [0.19837121116620585]
We propose a technique that starts with the early identification of validation concerns from a stakeholder perspective.
We develop a Model-Based Systems Engineering (MBSE) methodology to ensure complete and consistent requirements and test specifications.
Our study corroborates that our methodology is applicable and improves existing requirements and test specification processes.
arXiv Detail & Related papers (2022-09-03T18:24:32Z) - Designing MacPherson Suspension Architectures using Bayesian
Optimization [21.295015276123962]
Testing for compliance is performed first by computer simulation using a discipline model.
Designs passing this simulation are then considered for physical prototyping.
We show that the proposed approach is general, scalable, and efficient.
arXiv Detail & Related papers (2022-06-17T21:50:25Z) - Unsupervised Domain Generalization for Person Re-identification: A
Domain-specific Adaptive Framework [50.88463458896428]
Domain generalization (DG) has attracted much attention in person re-identification (ReID) recently.
Existing methods usually need the source domains to be labeled, which could be a significant burden for practical ReID tasks.
We propose a simple and efficient domain-specific adaptive framework, and realize it with an adaptive normalization module.
arXiv Detail & Related papers (2021-11-30T02:35:51Z) - TAL: Two-stream Adaptive Learning for Generalizable Person
Re-identification [115.31432027711202]
We argue that both domain-specific and domain-invariant features are crucial for improving the generalization ability of re-id models.
We name two-stream adaptive learning (TAL) to simultaneously model these two kinds of information.
Our framework can be applied to both single-source and multi-source domain generalization tasks.
arXiv Detail & Related papers (2021-11-29T01:27:42Z) - Self-Adversarial Disentangling for Specific Domain Adaptation [52.1935168534351]
Domain adaptation aims to bridge the domain shifts between the source and target domains.
Recent methods typically do not consider explicit prior knowledge on a specific dimension.
arXiv Detail & Related papers (2021-08-08T02:36:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.