論文の概要: Cost-Sensitive Uncertainty-Based Failure Recognition for Object Detection
- arxiv url: http://arxiv.org/abs/2404.17427v1
- Date: Fri, 26 Apr 2024 14:03:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-29 13:05:13.669620
- Title: Cost-Sensitive Uncertainty-Based Failure Recognition for Object Detection
- Title(参考訳): 物体検出のためのコスト感性不確実性に基づく故障認識
- Authors: Moussa Kassem Sbeyti, Michelle Karg, Christian Wirth, Nadja Klein, Sahin Albayrak,
- Abstract要約: 本稿では,ユーザ定義予算に合わせて,オブジェクト検出のためのコスト感受性フレームワークを提案する。
性能劣化を防ぐために最低限の閾値設定要件を導出する。
エラー認識率を最大化するために、しきい値処理の自動化と最適化を行う。
- 参考スコア(独自算出の注目度): 1.8990839669542954
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Object detectors in real-world applications often fail to detect objects due to varying factors such as weather conditions and noisy input. Therefore, a process that mitigates false detections is crucial for both safety and accuracy. While uncertainty-based thresholding shows promise, previous works demonstrate an imperfect correlation between uncertainty and detection errors. This hinders ideal thresholding, prompting us to further investigate the correlation and associated cost with different types of uncertainty. We therefore propose a cost-sensitive framework for object detection tailored to user-defined budgets on the two types of errors, missing and false detections. We derive minimum thresholding requirements to prevent performance degradation and define metrics to assess the applicability of uncertainty for failure recognition. Furthermore, we automate and optimize the thresholding process to maximize the failure recognition rate w.r.t. the specified budget. Evaluation on three autonomous driving datasets demonstrates that our approach significantly enhances safety, particularly in challenging scenarios. Leveraging localization aleatoric uncertainty and softmax-based entropy only, our method boosts the failure recognition rate by 36-60\% compared to conventional approaches. Code is available at https://mos-ks.github.io/publications.
- Abstract(参考訳): 現実の応用における物体検出器は、気象条件やノイズ入力などの様々な要因により、物体を検知できないことが多い。
したがって、偽検出を緩和するプロセスは、安全性と正確性の両方に不可欠である。
不確実性に基づくしきい値設定は有望であるが、以前の研究は不確実性と検出誤差の間に不完全な相関を示す。
これにより、理想的なしきい値設定が妨げられ、異なるタイプの不確実性による相関と関連するコストのさらなる調査が促される。
そこで本稿では,2種類のエラー,欠落,誤検出に関するユーザ定義予算に合わせて,オブジェクト検出のためのコスト感受性フレームワークを提案する。
性能劣化を防止するための最小限のしきい値要件を導出し、障害認識に対する不確実性の適用性を評価するためのメトリクスを定義します。
さらに,特定予算の故障認識率を最大化するために,しきい値処理の自動化と最適化を行う。
3つの自律走行データセットの評価は、我々のアプローチが特に挑戦的なシナリオにおいて、安全性を大幅に向上させることを示している。
局所化アレタリック不確実性とソフトマックスに基づくエントロピーのみを活用することで,従来の手法と比較して,故障認識率を36~60倍に向上させる。
コードはhttps://mos-ks.github.io/publications.comで公開されている。
関連論文リスト
- Know Where You're Uncertain When Planning with Multimodal Foundation Models: A Formal Framework [54.40508478482667]
認識と計画生成の不確実性を解消し、定量化し、緩和する包括的枠組みを提案する。
本稿では,知覚と意思決定の独特な性質に合わせた手法を提案する。
この不確実性分散フレームワークは, 変動率を最大40%削減し, タスク成功率をベースラインに比べて5%向上させることを示した。
論文 参考訳(メタデータ) (2024-11-03T17:32:00Z) - Uncertainty Estimation for 3D Object Detection via Evidential Learning [63.61283174146648]
本稿では,3次元検出器における鳥の視線表示における明らかな学習損失を利用して,3次元物体検出の不確かさを定量化するためのフレームワークを提案する。
本研究では,これらの不確実性評価の有効性と重要性を,分布外シーンの特定,局所化の不十分な物体の発見,および(偽陰性)検出の欠如について示す。
論文 参考訳(メタデータ) (2024-10-31T13:13:32Z) - Learning a Factorized Orthogonal Latent Space using Encoder-only Architecture for Fault Detection; An Alarm management perspective [0.2455468619225742]
本稿では,プロセス変数の誤同定および決定論的成分を効果的に分離する,エンコーダに基づく残差設計を提案する。
提案モデルは2つの異なるエンコーダを用いて、潜在空間を2つの空間に分解する。
提案モデルでは、ほぼゼロの誤報と誤検出を達成しつつ予測品質を著しく向上させる。
論文 参考訳(メタデータ) (2024-08-24T09:00:45Z) - Predicting Safety Misbehaviours in Autonomous Driving Systems using Uncertainty Quantification [8.213390074932132]
本稿では, 深層学習領域と異なる不確実性定量化手法を, 安全クリティカルな誤動作の予測試験のために評価する。
車両が実施する不確実性スコアは、高い不確実性スコアがサポートされていない実行条件を示すという直感に従って計算する。
本研究では,MC-DropoutとDeep Ensemblesの2つの不確実な定量化手法,すなわち,誤動作回避のための有効性と計算オーバーヘッドの評価を行った。
論文 参考訳(メタデータ) (2024-04-29T10:28:28Z) - Unsupervised Anomaly Detection with Rejection [19.136286864839846]
異常検知器は直観を用いて決定境界を学習するが、実際に検証することは困難である。
これに対抗する方法の1つは、検出器が高い不確実性のある例を拒否できるようにすることである。
これは、決定境界までの距離を捉え、低信頼の予測を拒否するために拒絶しきい値を設定する信頼度基準を用いる必要がある。
論文 参考訳(メタデータ) (2023-05-22T16:22:32Z) - Bayesian autoencoders with uncertainty quantification: Towards
trustworthy anomaly detection [78.24964622317634]
本研究では, ベイズオートエンコーダ (BAEs) の定式化により, 全体の異常不確かさを定量化する。
不確実性の質を評価するために,不確実性の予測を拒否するオプションを追加して,異常を分類する作業を検討する。
本実験は,BAEと総異常不確かさが,ベンチマークデータセットと製造用実データセットのセットに与える影響を実証するものである。
論文 参考訳(メタデータ) (2022-02-25T12:20:04Z) - CertainNet: Sampling-free Uncertainty Estimation for Object Detection [65.28989536741658]
ニューラルネットワークの不確実性を推定することは、安全クリティカルな設定において基本的な役割を果たす。
本研究では,オブジェクト検出のための新しいサンプリング不要不確実性推定法を提案する。
私たちはそれをCertainNetと呼び、各出力信号に対して、オブジェクト性、クラス、位置、サイズという、別の不確実性を提供するのは、これが初めてです。
論文 参考訳(メタデータ) (2021-10-04T17:59:31Z) - Temporal Difference Uncertainties as a Signal for Exploration [76.6341354269013]
強化学習における探索の効果的なアプローチは、最適な政策に対するエージェントの不確実性に依存することである。
本稿では,評価値のバイアスや時間的に矛盾する点を強調した。
本稿では,時間差誤差の分布の導出に依存する値関数の不確かさを推定する手法を提案する。
論文 参考訳(メタデータ) (2020-10-05T18:11:22Z) - Labels Are Not Perfect: Improving Probabilistic Object Detection via
Label Uncertainty [12.531126969367774]
これまでに提案した手法を用いて,真理境界ボックスパラメータに固有の不確かさを推定する。
KITTIデータセットを用いた実験結果から,本手法はベースラインモデルとモデルの両方を,平均精度で最大3.6%の精度で上回ることがわかった。
論文 参考訳(メタデータ) (2020-08-10T14:49:49Z) - Localization Uncertainty Estimation for Anchor-Free Object Detection [48.931731695431374]
アンカーベース物体検出のための既存の不確実性推定手法にはいくつかの制限がある。
アンカーフリー物体検出のためのUADと呼ばれる新しい位置推定不確実性推定手法を提案する。
本手法は,ボックスオフセットの4方向の不確かさを均一に捉え,どの方向が不確実であるかを判断する。
論文 参考訳(メタデータ) (2020-06-28T13:49:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。