論文の概要: Learning a Factorized Orthogonal Latent Space using Encoder-only Architecture for Fault Detection; An Alarm management perspective
- arxiv url: http://arxiv.org/abs/2408.13526v1
- Date: Sat, 24 Aug 2024 09:00:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 19:09:24.502517
- Title: Learning a Factorized Orthogonal Latent Space using Encoder-only Architecture for Fault Detection; An Alarm management perspective
- Title(参考訳): 異常検出のためのエンコーダのみアーキテクチャを用いた直交遅延空間の因子的学習 : 警報管理の観点から
- Authors: Vahid MohammadZadeh Eivaghi, Mahdi Aliyari Shoorehdeli,
- Abstract要約: 本稿では,プロセス変数の誤同定および決定論的成分を効果的に分離する,エンコーダに基づく残差設計を提案する。
提案モデルは2つの異なるエンコーダを用いて、潜在空間を2つの空間に分解する。
提案モデルでは、ほぼゼロの誤報と誤検出を達成しつつ予測品質を著しく向上させる。
- 参考スコア(独自算出の注目度): 0.2455468619225742
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: False and nuisance alarms in industrial fault detection systems are often triggered by uncertainty, causing normal process variable fluctuations to be erroneously identified as faults. This paper introduces a novel encoder-based residual design that effectively decouples the stochastic and deterministic components of process variables without imposing detection delay. The proposed model employs two distinct encoders to factorize the latent space into two orthogonal spaces: one for the deterministic part and the other for the stochastic part. To ensure the identifiability of the desired spaces, constraints are applied during training. The deterministic space is constrained to be smooth to guarantee determinism, while the stochastic space is required to resemble standard Gaussian noise. Additionally, a decorrelation term enforces the independence of the learned representations. The efficacy of this approach is demonstrated through numerical examples and its application to the Tennessee Eastman process, highlighting its potential for robust fault detection. By focusing decision logic solely on deterministic factors, the proposed model significantly enhances prediction quality while achieving nearly zero false alarms and missed detections, paving the way for improved operational safety and integrity in industrial environments.
- Abstract(参考訳): 産業断層検出システムにおける誤報やニュアンスアラームは、しばしば不確実性によって引き起こされ、通常のプロセス変動変動は誤って断層として特定される。
本稿では, プロセス変数の確率的, 決定論的成分を, 検出遅延を伴わずに効果的に分離する, エンコーダに基づく残差設計を提案する。
提案モデルは2つの異なるエンコーダを用いて、潜在空間を2つの直交空間に分解する: 1つは決定的部分、もう1つは確率的部分である。
所望の空間の識別可能性を確保するため、トレーニング中に制約を適用する。
決定性空間は、決定性を保証するために滑らかに制約される一方、確率性空間は標準ガウスノイズに類似するように要求される。
さらに、デコレーションという用語は、学習された表現の独立を強制する。
このアプローチの有効性は、数値的な例を通して示され、テネシー・イーストマン法に応用され、堅牢な断層検出の可能性を強調している。
決定論理を決定論的要因のみに焦点をあてることで、提案モデルは、ほぼゼロの誤報と検出の欠如を達成しつつ、予測品質を著しく向上させ、産業環境における運用安全性と整合性を向上させる道を開く。
関連論文リスト
- Certifying Robustness of Learning-Based Keypoint Detection and Pose Estimation Methods [9.953693315812995]
この研究は、視覚に基づく2段階の6次元オブジェクトポーズ推定の堅牢性の証明に対処する。
中心となる考え方は、ローカルロバストネスの認定を、分類タスクのニューラルネットワーク検証に変換することである。
論文 参考訳(メタデータ) (2024-07-31T19:02:54Z) - GeneralAD: Anomaly Detection Across Domains by Attending to Distorted Features [68.14842693208465]
GeneralADは、意味的、ほぼ分布的、産業的設定で動作するように設計された異常検出フレームワークである。
本稿では,ノイズ付加やシャッフルなどの簡単な操作を施した自己教師付き異常生成モジュールを提案する。
提案手法を10のデータセットに対して広範囲に評価し,6つの実験結果と,残りの6つの実験結果を得た。
論文 参考訳(メタデータ) (2024-07-17T09:27:41Z) - Cost-Sensitive Uncertainty-Based Failure Recognition for Object Detection [1.8990839669542954]
本稿では,ユーザ定義予算に合わせて,オブジェクト検出のためのコスト感受性フレームワークを提案する。
性能劣化を防ぐために最低限の閾値設定要件を導出する。
エラー認識率を最大化するために、しきい値処理の自動化と最適化を行う。
論文 参考訳(メタデータ) (2024-04-26T14:03:55Z) - Heteroscedastic Uncertainty Estimation Framework for Unsupervised Registration [32.081258147692395]
本稿では,異種画像の不確実性推定のためのフレームワークを提案する。
教師なし登録時の不確実性の高い領域の影響を適応的に低減することができる。
提案手法は, ベースラインを常に上回り, 有意な不確実性推定を導出する。
論文 参考訳(メタデータ) (2023-12-01T01:03:06Z) - Regularized Vector Quantization for Tokenized Image Synthesis [126.96880843754066]
画像の離散表現への量子化は、統合生成モデリングにおける根本的な問題である。
決定論的量子化は、厳しいコードブックの崩壊と推論段階の誤調整に悩まされ、一方、量子化は、コードブックの利用率の低下と再構築の目的に悩まされる。
本稿では、2つの視点から正規化を適用することにより、上記の問題を効果的に緩和できる正規化ベクトル量子化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-11T15:20:54Z) - An optimization method for out-of-distribution anomaly detection models [6.075775003017512]
頻繁な誤報は、産業アプリケーションにおける教師なし異常検出アルゴリズムの促進を妨げている。
SVMベースの分類器は後処理モジュールとして利用され、オブジェクトレベルでの異常マップから誤報を識別する。
論文 参考訳(メタデータ) (2023-02-02T08:29:10Z) - Toward Certified Robustness Against Real-World Distribution Shifts [65.66374339500025]
我々は、データから摂動を学ぶために生成モデルを訓練し、学習したモデルの出力に関して仕様を定義する。
この設定から生じるユニークな挑戦は、既存の検証者がシグモイドの活性化を厳密に近似できないことである。
本稿では,古典的な反例誘導的抽象的洗練の概念を活用するシグモイドアクティベーションを扱うための一般的なメタアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-06-08T04:09:13Z) - Neuro-Symbolic Entropy Regularization [78.16196949641079]
構造化予測では、目的は構造化されたオブジェクトをエンコードする多くの出力変数を共同で予測することである。
エントロピー正則化(Entropy regularization)という1つのアプローチは、決定境界が低確率領域にあるべきであることを示唆している。
我々は、モデルが有効対象を確実に予測することを奨励する損失、ニューロシンボリックエントロピー正規化を提案する。
論文 参考訳(メタデータ) (2022-01-25T06:23:10Z) - Localization Uncertainty Estimation for Anchor-Free Object Detection [48.931731695431374]
アンカーベース物体検出のための既存の不確実性推定手法にはいくつかの制限がある。
アンカーフリー物体検出のためのUADと呼ばれる新しい位置推定不確実性推定手法を提案する。
本手法は,ボックスオフセットの4方向の不確かさを均一に捉え,どの方向が不確実であるかを判断する。
論文 参考訳(メタデータ) (2020-06-28T13:49:30Z) - Scope Head for Accurate Localization in Object Detection [135.9979405835606]
本研究では,各位置のアンカーを相互依存関係としてモデル化したScopeNetと呼ばれる新しい検出器を提案する。
我々の簡潔で効果的な設計により、提案したScopeNetはCOCOの最先端の成果を達成する。
論文 参考訳(メタデータ) (2020-05-11T04:00:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。