Structured Conformal Inference for Matrix Completion with Applications to Group Recommender Systems
- URL: http://arxiv.org/abs/2404.17561v1
- Date: Fri, 26 Apr 2024 17:42:29 GMT
- Title: Structured Conformal Inference for Matrix Completion with Applications to Group Recommender Systems
- Authors: Ziyi Liang, Tianmin Xie, Xin Tong, Matteo Sesia,
- Abstract summary: We develop a conformal inference method to construct joint confidence regions for structured groups of missing entries.
Our method achieves stronger group-level guarantees by carefully assembling a structured calibration data set.
- Score: 16.519348575982004
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop a conformal inference method to construct joint confidence regions for structured groups of missing entries within a sparsely observed matrix. This method is useful to provide reliable uncertainty estimation for group-level collaborative filtering; for example, it can be applied to help suggest a movie for a group of friends to watch together. Unlike standard conformal techniques, which make inferences for one individual at a time, our method achieves stronger group-level guarantees by carefully assembling a structured calibration data set mimicking the patterns expected among the test group of interest. We propose a generalized weighted conformalization framework to deal with the lack of exchangeability arising from such structured calibration, and in this process we introduce several innovations to overcome computational challenges. The practicality and effectiveness of our method are demonstrated through extensive numerical experiments and an analysis of the MovieLens 100K data set.
Related papers
- A structured regression approach for evaluating model performance across intersectional subgroups [53.91682617836498]
Disaggregated evaluation is a central task in AI fairness assessment, where the goal is to measure an AI system's performance across different subgroups.
We introduce a structured regression approach to disaggregated evaluation that we demonstrate can yield reliable system performance estimates even for very small subgroups.
arXiv Detail & Related papers (2024-01-26T14:21:45Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
We revisit the likelihood-based inference principle and propose to use likelihood ratios to construct valid confidence sequences.
Our method is especially suitable for problems with well-specified likelihoods.
We show how to provably choose the best sequence of estimators and shed light on connections to online convex optimization.
arXiv Detail & Related papers (2023-11-08T00:10:21Z) - HiPerformer: Hierarchically Permutation-Equivariant Transformer for Time
Series Forecasting [56.95572957863576]
We propose a hierarchically permutation-equivariant model that considers both the relationship among components in the same group and the relationship among groups.
The experiments conducted on real-world data demonstrate that the proposed method outperforms existing state-of-the-art methods.
arXiv Detail & Related papers (2023-05-14T05:11:52Z) - Group conditional validity via multi-group learning [5.797821810358083]
We consider the problem of distribution-free conformal prediction and the criterion of group conditional validity.
Existing methods achieve such guarantees under either restrictive grouping structure or distributional assumptions.
We propose a simple reduction to the problem of achieving validity guarantees for individual populations by leveraging algorithms for a problem called multi-group learning.
arXiv Detail & Related papers (2023-03-07T15:51:03Z) - Robust Consensus Clustering and its Applications for Advertising
Forecasting [18.242055675730253]
We propose a novel algorithm -- robust consensus clustering that can find common ground truth among experts' opinions.
We apply the proposed method to the real-world advertising campaign segmentation and forecasting tasks.
arXiv Detail & Related papers (2022-12-27T21:49:04Z) - Rethinking Clustering-Based Pseudo-Labeling for Unsupervised
Meta-Learning [146.11600461034746]
Method for unsupervised meta-learning, CACTUs, is a clustering-based approach with pseudo-labeling.
This approach is model-agnostic and can be combined with supervised algorithms to learn from unlabeled data.
We prove that the core reason for this is lack of a clustering-friendly property in the embedding space.
arXiv Detail & Related papers (2022-09-27T19:04:36Z) - A One-shot Framework for Distributed Clustered Learning in Heterogeneous
Environments [54.172993875654015]
The paper proposes a family of communication efficient methods for distributed learning in heterogeneous environments.
One-shot approach, based on local computations at the users and a clustering based aggregation step at the server is shown to provide strong learning guarantees.
For strongly convex problems it is shown that, as long as the number of data points per user is above a threshold, the proposed approach achieves order-optimal mean-squared error rates in terms of the sample size.
arXiv Detail & Related papers (2022-09-22T09:04:10Z) - Exclusive Group Lasso for Structured Variable Selection [10.86544864007391]
A structured variable selection problem is considered.
A composite norm can be properly designed to promote such exclusive group sparsity patterns.
An active set algorithm is proposed that builds the solution by including structure atoms into the estimated support.
arXiv Detail & Related papers (2021-08-23T16:55:13Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartite ranking aims to learn a scoring function that ranks positive individuals higher than negative ones from labeled data.
There have been rising concerns on whether the learned scoring function can cause systematic disparity across different protected groups.
We propose a model post-processing framework for balancing them in the bipartite ranking scenario.
arXiv Detail & Related papers (2020-06-15T10:08:39Z) - Robust Grouped Variable Selection Using Distributionally Robust
Optimization [11.383869751239166]
We propose a Distributionally Robust Optimization (DRO) formulation with a Wasserstein-based uncertainty set for selecting grouped variables under perturbations.
We prove probabilistic bounds on the out-of-sample loss and the estimation bias, and establish the grouping effect of our estimator.
We show that our formulation produces an interpretable and parsimonious model that encourages sparsity at a group level.
arXiv Detail & Related papers (2020-06-10T22:32:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.