Rectifying Conformity Scores for Better Conditional Coverage
- URL: http://arxiv.org/abs/2502.16336v1
- Date: Sat, 22 Feb 2025 19:54:14 GMT
- Title: Rectifying Conformity Scores for Better Conditional Coverage
- Authors: Vincent Plassier, Alexander Fishkov, Victor Dheur, Mohsen Guizani, Souhaib Ben Taieb, Maxim Panov, Eric Moulines,
- Abstract summary: We present a new method for generating confidence sets within the split conformal prediction framework.<n>Our method performs a trainable transformation of any given conformity score to improve conditional coverage while ensuring exact marginal coverage.
- Score: 75.73184036344908
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a new method for generating confidence sets within the split conformal prediction framework. Our method performs a trainable transformation of any given conformity score to improve conditional coverage while ensuring exact marginal coverage. The transformation is based on an estimate of the conditional quantile of conformity scores. The resulting method is particularly beneficial for constructing adaptive confidence sets in multi-output problems where standard conformal quantile regression approaches have limited applicability. We develop a theoretical bound that captures the influence of the accuracy of the quantile estimate on the approximate conditional validity, unlike classical bounds for conformal prediction methods that only offer marginal coverage. We experimentally show that our method is highly adaptive to the local data structure and outperforms existing methods in terms of conditional coverage, improving the reliability of statistical inference in various applications.
Related papers
- Optimal Transport-based Conformal Prediction [8.302146576157497]
Conformal Prediction (CP) is a principled framework for uncertainty in blackbox learning models.<n>We introduce a novel CP procedure handling prediction score functions through a lens.<n>We then adapt our method for quantifying multi-output regression and multiclass classification.
arXiv Detail & Related papers (2025-01-31T09:48:28Z) - Conformal Inference of Individual Treatment Effects Using Conditional Density Estimates [3.7307776333361122]
Current state-of-the-art approaches, while providing valid prediction intervals, often yield overly conservative prediction intervals.<n>In this work, we introduce a conformal inference approach to ITE using the conditional density of the outcome.<n>We show that our prediction intervals are not only marginally valid but are narrower than existing methods.
arXiv Detail & Related papers (2025-01-24T21:46:37Z) - Conformal Prediction Sets with Improved Conditional Coverage using Trust Scores [52.92618442300405]
It is impossible to achieve exact, distribution-free conditional coverage in finite samples.<n>We propose an alternative conformal prediction algorithm that targets coverage where it matters most.
arXiv Detail & Related papers (2025-01-17T12:01:56Z) - Adaptive Conformal Inference by Betting [51.272991377903274]
We consider the problem of adaptive conformal inference without any assumptions about the data generating process.<n>Existing approaches for adaptive conformal inference are based on optimizing the pinball loss using variants of online gradient descent.<n>We propose a different approach for adaptive conformal inference that leverages parameter-free online convex optimization techniques.
arXiv Detail & Related papers (2024-12-26T18:42:08Z) - Adjusting Regression Models for Conditional Uncertainty Calibration [46.69079637538012]
We propose a novel algorithm to train a regression function to improve the conditional coverage after applying the split conformal prediction procedure.
We establish an upper bound for the miscoverage gap between the conditional coverage and the nominal coverage rate and propose an end-to-end algorithm to control this upper bound.
arXiv Detail & Related papers (2024-09-26T01:55:45Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
We develop a new method for generating prediction sets that combines the flexibility of conformal methods with an estimate of the conditional distribution.
Our method consistently outperforms existing approaches in terms of conditional coverage.
arXiv Detail & Related papers (2024-07-01T20:44:48Z) - Optimal Baseline Corrections for Off-Policy Contextual Bandits [61.740094604552475]
We aim to learn decision policies that optimize an unbiased offline estimate of an online reward metric.
We propose a single framework built on their equivalence in learning scenarios.
Our framework enables us to characterize the variance-optimal unbiased estimator and provide a closed-form solution for it.
arXiv Detail & Related papers (2024-05-09T12:52:22Z) - Federated Conformal Predictors for Distributed Uncertainty
Quantification [83.50609351513886]
Conformal prediction is emerging as a popular paradigm for providing rigorous uncertainty quantification in machine learning.
In this paper, we extend conformal prediction to the federated learning setting.
We propose a weaker notion of partial exchangeability, better suited to the FL setting, and use it to develop the Federated Conformal Prediction framework.
arXiv Detail & Related papers (2023-05-27T19:57:27Z) - Conformalized Unconditional Quantile Regression [27.528258690139793]
We develop a predictive inference procedure that combines conformal prediction with unconditional quantile regression.
We show that our procedure is adaptive to heteroscedasticity, provides transparent coverage guarantees that are relevant to the test instance at hand, and performs competitively with existing methods in terms of efficiency.
arXiv Detail & Related papers (2023-04-04T00:20:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.