論文の概要: The Future of Scientific Publishing: Automated Article Generation
- arxiv url: http://arxiv.org/abs/2404.17586v1
- Date: Thu, 11 Apr 2024 16:47:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-05 18:04:17.060442
- Title: The Future of Scientific Publishing: Automated Article Generation
- Title(参考訳): 科学出版の未来:自動記事生成
- Authors: Jeremy R. Harper,
- Abstract要約: 本研究では,Python コードからの学術論文の自動生成を目的とした,大規模言語モデル(LLM)プロンプトを活用した新しいソフトウェアツールを提案する。
Pythonは基本的な概念実証として機能するが、基盤となる方法論とフレームワークは、さまざまなGitHubリポジトリにまたがる適応性を示している。
この開発は高度な言語モデルエージェントに頼らずに達成され、一貫性と総合的な学術的コンテンツの自動生成において高い忠実性を確保した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This study introduces a novel software tool leveraging large language model (LLM) prompts, designed to automate the generation of academic articles from Python code a significant advancement in the fields of biomedical informatics and computer science. Selected for its widespread adoption and analytical versatility, Python served as a foundational proof of concept; however, the underlying methodology and framework exhibit adaptability across various GitHub repo's underlining the tool's broad applicability (Harper 2024). By mitigating the traditionally time-intensive academic writing process, particularly in synthesizing complex datasets and coding outputs, this approach signifies a monumental leap towards streamlining research dissemination. The development was achieved without reliance on advanced language model agents, ensuring high fidelity in the automated generation of coherent and comprehensive academic content. This exploration not only validates the successful application and efficiency of the software but also projects how future integration of LLM agents which could amplify its capabilities, propelling towards a future where scientific findings are disseminated more swiftly and accessibly.
- Abstract(参考訳): 本研究では,大規模言語モデル(LLM)のプロンプトを活用する新しいソフトウェアツールを紹介し,Pythonコードからの学術論文の自動生成をバイオメディカル情報学と計算機科学の分野で大きく進歩させる。
広く採用され、分析的な汎用性のために選択されたPythonは、基本的な概念実証として機能したが、基本的な方法論とフレームワークは、ツールの広範な適用性(Harper 2024)を基盤として、さまざまなGitHubリポジトリにまたがる適応性を示している。
特に複雑なデータセットと符号化出力の合成において、従来の時間集約的な学術的記述プロセスを緩和することにより、このアプローチは研究普及の合理化に向けた重要な飛躍を意味している。
この開発は高度な言語モデルエージェントに頼らずに達成され、一貫性と総合的な学術的コンテンツの自動生成において高い忠実性が保証された。
この調査は、ソフトウェアの適用と効率性の成功を実証するだけでなく、将来のLCMエージェントの統合によってその能力を増幅し、科学的な発見がより迅速かつアクセシブルに拡散される未来に向けて進むことを予測している。
関連論文リスト
- Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
検索エンハンスメントは機械学習(ML)の幅広い範囲に拡張できる
この研究は、MLの様々な領域の文献を、現在の文献から欠落している一貫した表記で合成することで、このパラダイムの正式なフレームワークであるRetrieval-Enhanced Machine Learning (REML)を導入する。
本研究の目的は、様々な分野の研究者に対して、検索強化モデルの包括的、正式に構造化された枠組みを付与し、学際的な将来の研究を促進することである。
論文 参考訳(メタデータ) (2024-07-17T20:01:21Z) - Symbolic Learning Enables Self-Evolving Agents [55.625275970720374]
エージェントシンボリックラーニング(エージェントシンボリックラーニング)(エージェントシンボリックラーニング)は、言語エージェントが自分自身で最適化できるための体系的なフレームワークである。
エージェント記号学習は、コネクショナリズム学習における2つの基本的なアルゴリズムを模倣することにより、言語エージェント内のシンボルネットワークを最適化するように設計されている。
我々は、標準ベンチマークと複雑な実世界のタスクの両方で概念実証実験を行う。
論文 参考訳(メタデータ) (2024-06-26T17:59:18Z) - A Survey on Large Language Models for Code Generation [9.555952109820392]
大規模言語モデル(LLM)は、様々なコード関連のタスクで顕著な進歩を遂げています。
本調査は、総合的かつ最新の文献レビューを提供することで、学界と実践的発展のギャップを埋めることを目的としている。
論文 参考訳(メタデータ) (2024-06-01T17:48:15Z) - A Data-to-Product Multimodal Conceptual Framework to Achieve Automated Software Evolution for Context-rich Intelligent Applications [0.0]
本研究では,ソフトウェアの自動進化を実現するための概念的枠組みを提案する。
概念的枠組みに基づいて選択的シーケンススコープモデル(3S)モデルを開発する。
この研究はインテリジェントなアプリケーションに関するものだが、フレームワークと分析方法は、AIが彼らのライフサイクルにより多くのインテリジェンスをもたらすため、他のタイプのソフトウェアに適用される可能性がある。
論文 参考訳(メタデータ) (2024-04-07T06:05:25Z) - LVLM-Interpret: An Interpretability Tool for Large Vision-Language Models [50.259006481656094]
本稿では,大規模視覚言語モデルの内部メカニズムの理解を目的とした対話型アプリケーションを提案する。
このインタフェースは, 画像パッチの解釈可能性を高めるために設計されており, 応答の生成に有効である。
本稿では,一般的な大規模マルチモーダルモデルであるLLaVAにおける障害機構の理解に,アプリケーションがどのように役立つかのケーススタディを示す。
論文 参考訳(メタデータ) (2024-04-03T23:57:34Z) - Automated Extraction and Maturity Analysis of Open Source Clinical Informatics Repositories from Scientific Literature [0.0]
本研究では、arXivにインデックスされた学術論文からGitHubリポジトリURLを体系的に抽出することにより、ギャップを埋める自動化手法を提案する。
当社のアプローチでは、関連論文に対するarXiv APIのクエリ、抽出したGitHub URLのクリーニング、GitHub APIによる包括的なリポジトリ情報の取得、スター、フォーク、オープンイシュー、コントリビュータなどの定義されたメトリクスに基づいてリポジトリの成熟度を分析しています。
論文 参考訳(メタデータ) (2024-03-20T17:06:51Z) - LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset,
Framework, and Benchmark [81.42376626294812]
本稿では,Language-Assisted Multi-Modalインストラクションチューニングデータセット,フレームワーク,ベンチマークを提案する。
我々の目標は、MLLMのトレーニングと評価のための成長するエコシステムとしてLAMMを確立することです。
本稿では,2次元および3次元視覚のための広範囲な視覚タスクをカバーする包括的データセットとベンチマークを提案する。
論文 参考訳(メタデータ) (2023-06-11T14:01:17Z) - A Survey on Pretrained Language Models for Neural Code Intelligence [4.020523898765404]
Neural Code Intelligence(NCI)の分野は、ソースコードの分析タスクに取り組むための有望なソリューションとして登場した。
NCIは、プログラミングの効率を改善し、ソフトウェア業界におけるヒューマンエラーを最小限にすることを目的としている。
事前訓練された言語モデルはNCI研究において支配的な力となり、常に最先端の成果をもたらしている。
論文 参考訳(メタデータ) (2022-12-20T08:34:56Z) - Automated Creation and Human-assisted Curation of Computable Scientific
Models from Code and Text [2.3746609573239756]
ドメインエキスパートは、コードに詳しくなければ、科学的モデルの実装を完全に理解することはできない。
我々は,科学モデルの自動作成と人手によるキュレーションのためのシステムを開発した。
本研究では,NASAのハイパーソニック・エアロダイナミックス(Hypersonic Aerodynamics)のウェブサイトから得られたコードと関連テキストのデータセットを用いて実験を行った。
論文 参考訳(メタデータ) (2022-01-28T17:31:38Z) - pymdp: A Python library for active inference in discrete state spaces [52.85819390191516]
pymdpはPythonでアクティブな推論をシミュレートするオープンソースパッケージである。
我々は,POMDPによるアクティブな推論をシミュレートする,最初のオープンソースパッケージを提供する。
論文 参考訳(メタデータ) (2022-01-11T12:18:44Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
機械学習システムの開発とデプロイは、現代のツールで簡単に実行できますが、プロセスは一般的に急ぎ、エンドツーエンドです。
私たちは、機械学習の開発と展開のための実証済みのシステムエンジニアリングアプローチを開発しました。
当社の「機械学習技術準備レベル」フレームワークは、堅牢で信頼性が高く、責任あるシステムを確保するための原則的なプロセスを定義します。
論文 参考訳(メタデータ) (2021-01-11T15:54:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。