論文の概要: Large Language Models for Next Point-of-Interest Recommendation
- arxiv url: http://arxiv.org/abs/2404.17591v2
- Date: Thu, 1 Aug 2024 08:54:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-02 18:59:12.650707
- Title: Large Language Models for Next Point-of-Interest Recommendation
- Title(参考訳): 次のポイント・オブ・インテンシブ・レコメンデーションのための大規模言語モデル
- Authors: Peibo Li, Maarten de Rijke, Hao Xue, Shuang Ao, Yang Song, Flora D. Salim,
- Abstract要約: 位置情報ベースのソーシャルネットワーク(LBSN)データは、しばしば次のPoint of Interest(POI)レコメンデーションタスクに使用される。
しばしば無視される課題の1つは、LBSNデータに存在する豊富なコンテキスト情報を効果的に利用する方法である。
本稿では,この課題に対処するために,LLM(Large Language Models)を用いたフレームワークを提案する。
- 参考スコア(独自算出の注目度): 53.93503291553005
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The next Point of Interest (POI) recommendation task is to predict users' immediate next POI visit given their historical data. Location-Based Social Network (LBSN) data, which is often used for the next POI recommendation task, comes with challenges. One frequently disregarded challenge is how to effectively use the abundant contextual information present in LBSN data. Previous methods are limited by their numerical nature and fail to address this challenge. In this paper, we propose a framework that uses pretrained Large Language Models (LLMs) to tackle this challenge. Our framework allows us to preserve heterogeneous LBSN data in its original format, hence avoiding the loss of contextual information. Furthermore, our framework is capable of comprehending the inherent meaning of contextual information due to the inclusion of commonsense knowledge. In experiments, we test our framework on three real-world LBSN datasets. Our results show that the proposed framework outperforms the state-of-the-art models in all three datasets. Our analysis demonstrates the effectiveness of the proposed framework in using contextual information as well as alleviating the commonly encountered cold-start and short trajectory problems.
- Abstract(参考訳): 次のPOI(Point of Interest)レコメンデーションタスクは、過去のデータから、ユーザの次のPOI訪問をすぐに予測することである。
ロケーションベースのソーシャルネットワーク(LBSN)データは、しばしば次のPOIレコメンデーションタスクに使用される。
しばしば無視される課題の1つは、LBSNデータに存在する豊富なコンテキスト情報を効果的に利用する方法である。
従来の手法はその数値的性質によって制限されており、この問題に対処することができない。
本稿では,事前学習型大規模言語モデル(LLM)を用いてこの問題に対処するフレームワークを提案する。
我々のフレームワークは、異種LBSNデータを元のフォーマットで保存できるので、コンテキスト情報の欠落を避けることができる。
さらに,本フレームワークは,コモンセンス知識を取り入れることで,文脈情報の本質的意味を理解することができる。
実験では、実世界の3つのLBSNデータセット上でフレームワークをテストする。
提案したフレームワークは,3つのデータセットすべてにおいて,最先端のモデルよりも優れていることを示す。
本分析は, コンテクスト情報を用いたフレームワークの有効性と, コールドスタートやショートトラジェクトリの問題の緩和効果を示す。
関連論文リスト
- P-RAG: Progressive Retrieval Augmented Generation For Planning on Embodied Everyday Task [94.08478298711789]
Embodied Everyday Taskは、インボディードAIコミュニティで人気のあるタスクである。
自然言語命令は明示的なタスクプランニングを欠くことが多い。
タスク環境に関する知識をモデルに組み込むには、広範囲なトレーニングが必要である。
論文 参考訳(メタデータ) (2024-09-17T15:29:34Z) - Zero-Shot Stance Detection using Contextual Data Generation with LLMs [0.04096453902709291]
文脈データ生成(DyMoAdapt)を用いた動的モデル適応法を提案する。
このアプローチでは、テスト時に既存のモデルを微調整することを目的としています。
GPT-3を用いてトピック固有の新しいデータを生成する。
この方法は、新しいトピックへのモデルの適応を可能にすることで、性能を向上させることができる。
論文 参考訳(メタデータ) (2024-05-19T17:58:26Z) - Wiki-TabNER:Advancing Table Interpretation Through Named Entity
Recognition [19.423556742293762]
TIタスクの評価に広く用いられているベンチマークデータセットを分析した。
この欠点を克服するため、我々はより困難なデータセットを構築し、注釈付けします。
本稿では,新たに開発された大規模言語モデルを評価するためのプロンプトフレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-07T15:22:07Z) - Follow-ups Also Matter: Improving Contextual Bandits via Post-serving
Contexts [31.33919659549256]
本稿では,ポストサーベイング・コンテクストに対する新しい文脈的バンディット問題を提案する。
我々のアルゴリズムである poLinUCB は、標準的な仮定の下では、厳格に後悔する。
合成データセットと実世界のデータセットの両方に対する大規模な実証テストは、サービス後コンテキストを活用するという大きなメリットを示している。
論文 参考訳(メタデータ) (2023-09-25T06:22:28Z) - Exploring the Limits of Historical Information for Temporal Knowledge
Graph Extrapolation [59.417443739208146]
本稿では,歴史的コントラスト学習の新しい学習枠組みに基づくイベント予測モデルを提案する。
CENETは、最も潜在的なエンティティを識別するために、歴史的および非歴史的依存関係の両方を学ぶ。
提案したモデルを5つのベンチマークグラフで評価する。
論文 参考訳(メタデータ) (2023-08-29T03:26:38Z) - Self-augmented Data Selection for Few-shot Dialogue Generation [18.794770678708637]
我々は,MR-to-Text生成問題に対処するために,自己学習フレームワークを採用する。
我々は,我々の生成モデルが最も不確実なデータを選択するための新しいデータ選択戦略を提案する。
論文 参考訳(メタデータ) (2022-05-19T16:25:50Z) - The Surprising Performance of Simple Baselines for Misinformation
Detection [4.060731229044571]
我々は、現代のトランスフォーマーベースの言語モデルの広いセットのパフォーマンスを調べます。
誤情報検出の新たな手法の創出と評価のベースラインとして,本フレームワークを提案する。
論文 参考訳(メタデータ) (2021-04-14T16:25:22Z) - InfoBERT: Improving Robustness of Language Models from An Information
Theoretic Perspective [84.78604733927887]
BERTのような大規模言語モデルは、幅広いNLPタスクで最先端のパフォーマンスを実現している。
近年の研究では、このようなBERTベースのモデルが、テキストの敵対的攻撃の脅威に直面していることが示されている。
本稿では,事前学習した言語モデルの堅牢な微調整のための新しい学習フレームワークであるInfoBERTを提案する。
論文 参考訳(メタデータ) (2020-10-05T20:49:26Z) - KGPT: Knowledge-Grounded Pre-Training for Data-to-Text Generation [100.79870384880333]
知識に富んだテキストを生成するための知識基盤事前学習(KGPT)を提案する。
我々は、その効果を評価するために、3つの設定、すなわち、完全教師付き、ゼロショット、少数ショットを採用します。
ゼロショット設定では、WebNLG上で30 ROUGE-L以上を達成するが、他の全てのベースラインは失敗する。
論文 参考訳(メタデータ) (2020-10-05T19:59:05Z) - Learning from Context or Names? An Empirical Study on Neural Relation
Extraction [112.06614505580501]
テキストにおける2つの主要な情報ソースの効果について検討する:テキストコンテキストとエンティティ参照(名前)
本稿では,関係抽出のための実体型コントラスト事前学習フレームワーク(RE)を提案する。
我々のフレームワークは、異なるREシナリオにおけるニューラルモデルの有効性と堅牢性を改善することができる。
論文 参考訳(メタデータ) (2020-10-05T11:21:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。