論文の概要: SetCSE: Set Operations using Contrastive Learning of Sentence Embeddings
- arxiv url: http://arxiv.org/abs/2404.17606v1
- Date: Thu, 25 Apr 2024 02:05:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 20:10:08.317084
- Title: SetCSE: Set Operations using Contrastive Learning of Sentence Embeddings
- Title(参考訳): SetCSE: 文埋め込みのコントラスト学習を用いた設定操作
- Authors: Kang Liu,
- Abstract要約: SetCSEは複雑なセマンティクスを表現するためにセットを使用し、構造化情報クエリのための明確に定義された操作を組み込む。
そこで本稿では,文の埋め込みモデルに対する意味論の理解を高めるために,集合間のコントラスト学習手法を提案する。
本研究では,SetCSEが複合意味論に関する人間の言語表現の慣習に準拠していることを示す。
- 参考スコア(独自算出の注目度): 6.988934943372354
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Taking inspiration from Set Theory, we introduce SetCSE, an innovative information retrieval framework. SetCSE employs sets to represent complex semantics and incorporates well-defined operations for structured information querying under the provided context. Within this framework, we introduce an inter-set contrastive learning objective to enhance comprehension of sentence embedding models concerning the given semantics. Furthermore, we present a suite of operations, including SetCSE intersection, difference, and operation series, that leverage sentence embeddings of the enhanced model for complex sentence retrieval tasks. Throughout this paper, we demonstrate that SetCSE adheres to the conventions of human language expressions regarding compounded semantics, provides a significant enhancement in the discriminatory capability of underlying sentence embedding models, and enables numerous information retrieval tasks involving convoluted and intricate prompts which cannot be achieved using existing querying methods.
- Abstract(参考訳): Set Theory からインスピレーションを得て,革新的な情報検索フレームワーク SetCSE を紹介した。
SetCSEは複雑なセマンティクスを表現するためにセットを使用し、提供されたコンテキスト下で構造化された情報クエリのための明確に定義された操作を組み込む。
本フレームワークでは,与えられた意味論に関する文埋め込みモデルの理解を高めるために,集合間コントラスト学習の目的を導入する。
さらに,複雑な文検索タスクのための拡張モデルの文埋め込みを利用する,SetCSEの交叉,差分,操作系列を含む一連の操作を提案する。
本稿では,SetCSEが複合意味論に関する人間の言語表現の慣習に準拠していることを示すとともに,基礎となる文埋め込みモデルの識別能力を大幅に向上させ,既存のクエリ手法では達成できない複雑で複雑なプロンプトを含む多数の情報検索タスクを可能にする。
関連論文リスト
- Pointer-Guided Pre-Training: Infusing Large Language Models with Paragraph-Level Contextual Awareness [3.2925222641796554]
ポインター誘導セグメントオーダリング(SO)は,段落レベルのテキスト表現の文脈的理解を高めることを目的とした,新しい事前学習手法である。
実験の結果,ポインタ誘導型事前学習は複雑な文書構造を理解する能力を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2024-06-06T15:17:51Z) - Contextualization Distillation from Large Language Model for Knowledge
Graph Completion [51.126166442122546]
我々は、差別的かつ生成的なKGCフレームワークと互換性のあるプラグイン・アンド・プレイ方式であるContextualization Distillation戦略を導入する。
提案手法は,大規模言語モデルに対して,コンパクトで構造的な三重項を文脈に富んだセグメントに変換するように指示することから始まる。
多様なデータセットとKGC技術にわたる総合的な評価は、我々のアプローチの有効性と適応性を強調している。
論文 参考訳(メタデータ) (2024-01-28T08:56:49Z) - Prompt-based Logical Semantics Enhancement for Implicit Discourse
Relation Recognition [4.7938839332508945]
Inlicit Discourse Relation Recognition (IDRR) のための Prompt-based Logical Semantics Enhancement (PLSE) 法を提案する。
提案手法は,事前学習した言語モデルに対する対話関係に関する知識を,素早い接続予測によってシームレスに注入する。
PDTB 2.0 と CoNLL16 データセットによる実験結果から,本手法は現状の最先端モデルに対して優れた一貫した性能を発揮することが示された。
論文 参考訳(メタデータ) (2023-11-01T08:38:08Z) - Bridging Continuous and Discrete Spaces: Interpretable Sentence
Representation Learning via Compositional Operations [80.45474362071236]
文の合成意味論が埋め込み空間における構成操作として直接反映できるかどうかは不明である。
文埋め込み学習のためのエンドツーエンドフレームワークであるInterSentを提案する。
論文 参考訳(メタデータ) (2023-05-24T00:44:49Z) - In-Context Probing: Toward Building Robust Classifiers via Probing Large
Language Models [5.5089506884366735]
本稿では, In-Context Probing (ICP) という代替手法を提案する。
インコンテキスト学習と同様に、入力の表現を命令で文脈化するが、出力予測を復号する代わりに、ラベルを予測するために文脈化表現を探索する。
我々はICPがファインタニングよりも優れていることを示し、より小さなモデルの上に分類器を構築するのに特に有用であることを示した。
論文 参考訳(メタデータ) (2023-05-23T15:43:04Z) - InfoCSE: Information-aggregated Contrastive Learning of Sentence
Embeddings [61.77760317554826]
本稿では,教師なし文の埋め込みを学習するための情報型コントラスト学習フレームワーク InfoCSE を提案する。
提案したInfoCSEを,セマンティックテキスト類似性(STS)タスクを用いて,いくつかのベンチマークデータセット上で評価する。
実験の結果, InfoCSE は BERT ベースでは2.60%, BERT 大規模では1.77% でSimCSE より優れていた。
論文 参考訳(メタデータ) (2022-10-08T15:53:19Z) - Utterance Rewriting with Contrastive Learning in Multi-turn Dialogue [22.103162555263143]
比較学習とマルチタスク学習を導入し、問題を共同でモデル化する。
提案手法は,複数の公開データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-03-22T10:13:27Z) - Set Representation Learning with Generalized Sliced-Wasserstein
Embeddings [22.845403993200932]
集合構造データから表現を学習するための幾何学的解釈可能なフレームワークを提案する。
特に、確率測度からのサンプルとして集合の要素を扱い、一般化スライスワッサーシュタインに対する正確なユークリッド埋め込みを提案する。
我々は,複数の教師付きおよび教師なし集合学習タスクに関する提案フレームワークを評価し,最先端集合表現学習アプローチに対するその優位性を実証する。
論文 参考訳(メタデータ) (2021-03-05T19:00:34Z) - Automated Concatenation of Embeddings for Structured Prediction [75.44925576268052]
本稿では, 埋め込みの自動結合(ACE)を提案し, 構造予測タスクにおける埋め込みのより優れた結合を見つけるプロセスを自動化する。
我々は、強化学習の戦略に従い、制御器のパラメータを最適化し、タスクモデルの精度に基づいて報酬を計算する。
論文 参考訳(メタデータ) (2020-10-10T14:03:20Z) - Conversational Semantic Parsing [50.954321571100294]
共参照解決やコンテキスト転送といったセッションベースのプロパティは、パイプラインシステムで下流で処理される。
60kの発話からなる20kセッションからなる,セッションベースで構成型タスク指向構文解析データセットを新たにリリースする。
セッションベース解析のためのSeq2Seqモデルの新たなファミリーを提案し、ATIS, SNIPS, TOP, DSTC2における現在の最先端技術と同等の性能を実現する。
論文 参考訳(メタデータ) (2020-09-28T22:08:00Z) - Multidirectional Associative Optimization of Function-Specific Word
Representations [86.87082468226387]
本稿では,関係する単語群間の関連を学習するためのニューラルネットワークフレームワークを提案する。
我々のモデルは結合関数固有の単語ベクトル空間を誘導し、例えば可塑性SVO合成のベクトルが近接して配置される。
このモデルは、共同空間においても単語群のメンバーシップに関する情報を保持し、SVO構造を前提とした複数のタスクに効果的に適用することができる。
論文 参考訳(メタデータ) (2020-05-11T17:07:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。