論文の概要: In-Context Probing: Toward Building Robust Classifiers via Probing Large
Language Models
- arxiv url: http://arxiv.org/abs/2305.14171v3
- Date: Fri, 22 Dec 2023 13:27:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-25 18:44:04.609464
- Title: In-Context Probing: Toward Building Robust Classifiers via Probing Large
Language Models
- Title(参考訳): In-Context Probing:大規模言語モデルによるロバスト分類器の構築に向けて
- Authors: Afra Amini and Massimiliano Ciaramita
- Abstract要約: 本稿では, In-Context Probing (ICP) という代替手法を提案する。
インコンテキスト学習と同様に、入力の表現を命令で文脈化するが、出力予測を復号する代わりに、ラベルを予測するために文脈化表現を探索する。
我々はICPがファインタニングよりも優れていることを示し、より小さなモデルの上に分類器を構築するのに特に有用であることを示した。
- 参考スコア(独自算出の注目度): 5.5089506884366735
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models are able to learn new tasks in context, where they are
provided with instructions and a few annotated examples. However, the
effectiveness of in-context learning is dependent on the provided context, and
the performance on a downstream task can vary considerably, depending on the
instruction. Importantly, such dependency on the context can surface in
unpredictable ways, e.g., a seemingly more informative instruction might lead
to a worse performance. In this paper, we propose an alternative approach,
which we term In-Context Probing (ICP). Similar to in-context learning, we
contextualize the representation of the input with an instruction, but instead
of decoding the output prediction, we probe the contextualized representation
to predict the label. Through a series of experiments on a diverse set of
classification tasks, we show that in-context probing is significantly more
robust to changes in instructions. We further show that ICP performs
competitive or superior to finetuning and can be particularly helpful to build
classifiers on top of smaller models, with less than a hundred training
examples.
- Abstract(参考訳): 大きな言語モデルは、新しいタスクをコンテキストで学習することができ、命令といくつかの注釈付きの例が提供されている。
しかし、文脈内学習の有効性は提供されたコンテキストに依存しており、下流タスクのパフォーマンスは命令によって大きく異なる可能性がある。
重要なのは、このようなコンテキストへの依存が予測不能な方法で現れる可能性があることだ。
本稿では, In-Context Probing (ICP) という代替手法を提案する。
文脈内学習と同様に、入力の表現を命令でコンテキスト化するが、出力予測をデコードする代わりに、文脈化された表現を探索してラベルを予測する。
多様な分類タスクの一連の実験を通して、文脈内探索は命令の変化に対してはるかに堅牢であることを示す。
さらに、ICPは微調整よりも優れた性能を示し、より小さなモデルの上に分類器を構築するのに特に役立ち、訓練例は100に満たない。
関連論文リスト
- Enhancing Input-Label Mapping in In-Context Learning with Contrastive Decoding [71.01099784480597]
大規模言語モデル(LLM)は、コンテキスト内学習(ICL)を通じて、様々なタスクで優れる
In-Context Contrastive Decoding (ICCD)を導入する。
ICCDは、正と負のインコンテキストの例の出力分布を対比することで、入力ラベルマッピングを強調する。
論文 参考訳(メタデータ) (2025-02-19T14:04:46Z) - On the Loss of Context-awareness in General Instruction Fine-tuning [101.03941308894191]
教師付き微調整後の文脈認識の喪失について検討した。
性能低下は,会話指導の微調整中に学んだ異なる役割に対する偏見と関連していることがわかった。
一般命令微調整データセットから文脈依存例を識別する指標を提案する。
論文 参考訳(メタデータ) (2024-11-05T00:16:01Z) - Vocabulary-Defined Semantics: Latent Space Clustering for Improving In-Context Learning [32.178931149612644]
コンテキスト内学習により、言語モデルは下流のデータに適応したり、プロンプト内のデモとして少数のサンプルでタスクを組み込むことができる。
しかし、文脈内学習のパフォーマンスは、実演の質、形式、順序によって不安定である可能性がある。
語彙定義意味論(vocabulary-defined semantics)を提案する。
論文 参考訳(メタデータ) (2024-01-29T14:29:48Z) - Instruction Position Matters in Sequence Generation with Large Language
Models [67.87516654892343]
大規模言語モデル(LLM)は、翻訳や要約といった条件付きシーケンス生成タスクを実行することができる。
入力文の後にタスク命令の位置をシフトさせることにより,LLMの指示追従能力を向上させることを提案する。
論文 参考訳(メタデータ) (2023-08-23T12:36:57Z) - SINC: Self-Supervised In-Context Learning for Vision-Language Tasks [64.44336003123102]
大規模言語モデルにおけるコンテキスト内学習を実現するためのフレームワークを提案する。
メタモデルは、カスタマイズされたデモからなる自己教師型プロンプトで学ぶことができる。
実験の結果、SINCは様々な視覚言語タスクにおいて勾配に基づく手法よりも優れていた。
論文 参考訳(メタデータ) (2023-07-15T08:33:08Z) - RetICL: Sequential Retrieval of In-Context Examples with Reinforcement Learning [53.52699766206808]
In-Context Learning (RetICL) のための検索式を提案する。
RetICLは数学用語の問題解決と科学的質問応答のタスクに基づいて評価し,一貫した性能や一致,学習可能なベースラインを示す。
論文 参考訳(メタデータ) (2023-05-23T20:15:56Z) - Fairness-guided Few-shot Prompting for Large Language Models [93.05624064699965]
インコンテキスト学習は、トレーニング例、例えば順、プロンプトフォーマットのバリエーションによって、高い不安定性に悩まされる可能性がある。
ラベルや属性に対する固定的なプロンプトの予測バイアスを評価するための指標を導入する。
そこで本研究では,テキスト内学習の性能向上のための最寄りのプロンプトを特定するための,欲求探索に基づく新しい探索手法を提案する。
論文 参考訳(メタデータ) (2023-03-23T12:28:25Z) - Compositional Exemplars for In-context Learning [21.961094715261133]
大規模な事前学習言語モデル(LM)は、印象的なインコンテキスト学習(ICL)能力を示している。
本稿では,CEIL (Compositional Exemplars for In-context Learning) を提案する。
我々は、感情分析、パラフレーズ検出、自然言語推論、コモンセンス推論、オープンドメイン質問応答、コード生成、意味解析を含む7つの異なるNLPタスクから、CEILを12の分類および生成データセットで検証する。
論文 参考訳(メタデータ) (2023-02-11T14:02:08Z) - Improving Few-Shot Performance of Language Models via Nearest Neighbor
Calibration [12.334422701057674]
In-context Learning のための近辺校正フレームワークを提案する。
インコンテキスト学習パラダイムは、トレーニングインスタンスを推論する際に誤ったラベルを生成するという現象にインスパイアされている。
テキスト分類タスクの多種多様な実験により,本手法はテキスト内学習を大幅に改善することが示された。
論文 参考訳(メタデータ) (2022-12-05T12:49:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。