論文の概要: Attention-aware non-rigid image registration for accelerated MR imaging
- arxiv url: http://arxiv.org/abs/2404.17621v1
- Date: Fri, 26 Apr 2024 14:25:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 20:00:20.309189
- Title: Attention-aware non-rigid image registration for accelerated MR imaging
- Title(参考訳): MR画像の高速化のための注意型非剛性画像登録法
- Authors: Aya Ghoul, Jiazhen Pan, Andreas Lingg, Jens Kübler, Patrick Krumm, Kerstin Hammernik, Daniel Rueckert, Sergios Gatidis, Thomas Küstner,
- Abstract要約: 我々は,MRIの完全サンプリングと高速化のために,非厳密なペアワイズ登録を行うことのできる,注目に敏感なディープラーニングベースのフレームワークを提案する。
我々は、複数の解像度レベルで、登録された画像ペア間の類似性マップを構築するために、局所的な視覚表現を抽出する。
本モデルでは, 異なるサンプリング軌道にまたがって, 安定かつ一貫した運動場を導出することを示す。
- 参考スコア(独自算出の注目度): 10.47044784972188
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Accurate motion estimation at high acceleration factors enables rapid motion-compensated reconstruction in Magnetic Resonance Imaging (MRI) without compromising the diagnostic image quality. In this work, we introduce an attention-aware deep learning-based framework that can perform non-rigid pairwise registration for fully sampled and accelerated MRI. We extract local visual representations to build similarity maps between the registered image pairs at multiple resolution levels and additionally leverage long-range contextual information using a transformer-based module to alleviate ambiguities in the presence of artifacts caused by undersampling. We combine local and global dependencies to perform simultaneous coarse and fine motion estimation. The proposed method was evaluated on in-house acquired fully sampled and accelerated data of 101 patients and 62 healthy subjects undergoing cardiac and thoracic MRI. The impact of motion estimation accuracy on the downstream task of motion-compensated reconstruction was analyzed. We demonstrate that our model derives reliable and consistent motion fields across different sampling trajectories (Cartesian and radial) and acceleration factors of up to 16x for cardiac motion and 30x for respiratory motion and achieves superior image quality in motion-compensated reconstruction qualitatively and quantitatively compared to conventional and recent deep learning-based approaches. The code is publicly available at https://github.com/lab-midas/GMARAFT.
- Abstract(参考訳): 高加速度率での正確な動き推定は、診断画像の品質を損なうことなく、MRI(磁気共鳴画像)の高速な動き補償再構成を可能にする。
そこで本研究では,MRIの完全サンプリングと高速化のために,非厳密なペアワイズ登録を行うことのできる,注目に敏感なディープラーニングベースのフレームワークを提案する。
我々は,複数の解像度で登録された画像ペア間の類似度マップを構築するために,局所的な視覚表現を抽出し,また,アンダーサンプによるアーティファクトの存在の曖昧さを軽減するために,トランスフォーマーベースのモジュールを用いて長距離コンテキスト情報を活用する。
局所的および大域的依存関係を組み合わせて、粗大度と微動推定を同時に行う。
心・胸部MRIを施行した101例と健常者62例について, 完全採取および加速データを用いて検討した。
動き補償再構成の下流作業に対する動き推定精度の影響を解析した。
本モデルでは,異なるサンプリング軌跡(カルテシアンおよびラジアル)にまたがる安定かつ一貫した運動場と,最大16倍の心動,30倍の呼吸運動の加速度係数を導出し,従来と最近の深層学習に基づくアプローチと比較して,運動補償再建における画像品質を質的かつ定量的に向上することを示した。
コードはhttps://github.com/lab-midas/GMARAFTで公開されている。
関連論文リスト
- Highly efficient non-rigid registration in k-space with application to cardiac Magnetic Resonance Imaging [10.618048010632728]
非剛性動作推定のためのローカル・オール・パス・アテンション・ネットワーク(LAPANet)と呼ばれる,自己教師型深層学習に基づく新しいフレームワークを提案する。
LAPANetは,種々のサンプリング軌跡と加速度速度で心運動推定を行った。
非剛性運動に対する高時間分解能(5ミリ秒未満)は、動的およびリアルタイムMRIアプリケーションにおける動きの検出、追跡、修正のための新しい道を開く。
論文 参考訳(メタデータ) (2024-10-24T15:19:59Z) - A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
ディープニューラルネットワークは、アンダーサンプル計測から高忠実度画像を再構成する大きな可能性を示している。
我々のモデルは、離散化に依存しないアーキテクチャであるニューラル演算子に基づいている。
我々の推論速度は拡散法よりも1,400倍速い。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
磁気共鳴イメージング(MRI)におけるオフ共鳴アーティファクトは、画像ボリューム内のスピンの実際の共鳴周波数が空間情報を符号化するのに使用される期待周波数と異なる場合に発生する視覚歪みである。
本稿では,2次元MRI再構成問題を3次元に引き上げ,このオフ共鳴をモデル化するための「スペクトル」次元を導入することで,これらのアーチファクトを解決することを提案する。
論文 参考訳(メタデータ) (2023-11-22T05:44:51Z) - JSMoCo: Joint Coil Sensitivity and Motion Correction in Parallel MRI
with a Self-Calibrating Score-Based Diffusion Model [3.3053426917821134]
アンダーサンプルMRI再構成のための動きパラメータとコイル感度マップを共同で推定する。
本手法は, 動きの影響を受けない, 疎サンプリングされたk空間データから, 高品質MRI画像の再構成を行うことができる。
論文 参考訳(メタデータ) (2023-10-14T17:11:25Z) - Deep Cardiac MRI Reconstruction with ADMM [7.694990352622926]
心臓画像の分野では, 深層学習(DL)を用いたシネ・マルチコントラスト再建法を提案する。
提案手法は画像領域とk空間領域の両方を最適化し,高い再構成精度を実現する。
論文 参考訳(メタデータ) (2023-10-10T13:46:11Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
本稿では,畳み込み長短期記憶(Conv-LSTM)に基づくリカレントニューラルネットワーク(Recurrent Neural Network, RNN)を提案する。
提案アルゴリズムは,DBSのリアルタイムi-MRIを実現する可能性があり,汎用的なMR誘導介入に使用できる。
論文 参考訳(メタデータ) (2022-03-28T14:03:45Z) - Motion Correction and Volumetric Reconstruction for Fetal Functional
Magnetic Resonance Imaging Data [3.690756997172894]
運動補正は胎児脳の機能的磁気共鳴イメージング(fMRI)において重要な前処理ステップである。
胎児のfMRIに対する現在の動作補正手法は、特定の取得時点から1つの3Dボリュームを選択する。
本稿では,外乱運動補正を用いて高解像度の基準体積を推定する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-11T19:11:16Z) - Multi-modal Aggregation Network for Fast MR Imaging [85.25000133194762]
我々は,完全サンプル化された補助モダリティから補完表現を発見できる,MANetという新しいマルチモーダル・アグリゲーション・ネットワークを提案する。
我々のMANetでは,完全サンプリングされた補助的およびアンアンサンプされた目標モダリティの表現は,特定のネットワークを介して独立に学習される。
私たちのMANetは、$k$-spaceドメインの周波数信号を同時に回復できるハイブリッドドメイン学習フレームワークに従います。
論文 参考訳(メタデータ) (2021-10-15T13:16:59Z) - LAPNet: Non-rigid Registration derived in k-space for Magnetic Resonance
Imaging [28.404584219735074]
胸部スキャン中にこのような動きを補正する動き補正技術が提案されている。
特に興味と課題は、アンダーサンプリングされた動き分解データから信頼できる非剛体運動場の導出にある。
アンダーサンプされたk空間データから高速かつ正確な非剛性登録を行うためのディープラーニングに基づく手法を提案する。
論文 参考訳(メタデータ) (2021-07-19T15:39:23Z) - Towards Ultrafast MRI via Extreme k-Space Undersampling and
Superresolution [65.25508348574974]
我々は、オリジナルのfastMRIチャレンジを参照するすべての公開論文によって報告されたMRI加速係数を下回る。
低解像を補うための強力な深層学習に基づく画像強化手法を検討する。
復元された画像の品質は他の方法よりも高く、MSEは0.00114、PSNRは29.6 dB、SSIMは0.956 x16加速係数である。
論文 参考訳(メタデータ) (2021-03-04T10:45:01Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
本稿では,Slice-Interleaved Diffusionと呼ばれる拡散符号化方式を提案する。
SIDEは、拡散重み付き(DW)画像ボリュームを異なる拡散勾配で符号化したスライスでインターリーブする。
また,高いスライスアンサンプデータからDW画像を効果的に再構成するためのディープラーニングに基づく手法を提案する。
論文 参考訳(メタデータ) (2020-02-25T14:48:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。