論文の概要: Highly efficient non-rigid registration in k-space with application to cardiac Magnetic Resonance Imaging
- arxiv url: http://arxiv.org/abs/2410.18834v1
- Date: Thu, 24 Oct 2024 15:19:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-25 12:50:32.935567
- Title: Highly efficient non-rigid registration in k-space with application to cardiac Magnetic Resonance Imaging
- Title(参考訳): k空間における高効率非剛性レジストレーションと心磁気共鳴イメージングへの応用
- Authors: Aya Ghoul, Kerstin Hammernik, Andreas Lingg, Patrick Krumm, Daniel Rueckert, Sergios Gatidis, Thomas Küstner,
- Abstract要約: 非剛性動作推定のためのローカル・オール・パス・アテンション・ネットワーク(LAPANet)と呼ばれる,自己教師型深層学習に基づく新しいフレームワークを提案する。
LAPANetは,種々のサンプリング軌跡と加速度速度で心運動推定を行った。
非剛性運動に対する高時間分解能(5ミリ秒未満)は、動的およびリアルタイムMRIアプリケーションにおける動きの検出、追跡、修正のための新しい道を開く。
- 参考スコア(独自算出の注目度): 10.618048010632728
- License:
- Abstract: In Magnetic Resonance Imaging (MRI), high temporal-resolved motion can be useful for image acquisition and reconstruction, MR-guided radiotherapy, dynamic contrast-enhancement, flow and perfusion imaging, and functional assessment of motion patterns in cardiovascular, abdominal, peristaltic, fetal, or musculoskeletal imaging. Conventionally, these motion estimates are derived through image-based registration, a particularly challenging task for complex motion patterns and high dynamic resolution. The accelerated scans in such applications result in imaging artifacts that compromise the motion estimation. In this work, we propose a novel self-supervised deep learning-based framework, dubbed the Local-All Pass Attention Network (LAPANet), for non-rigid motion estimation directly from the acquired accelerated Fourier space, i.e. k-space. The proposed approach models non-rigid motion as the cumulative sum of local translational displacements, following the Local All-Pass (LAP) registration technique. LAPANet was evaluated on cardiac motion estimation across various sampling trajectories and acceleration rates. Our results demonstrate superior accuracy compared to prior conventional and deep learning-based registration methods, accommodating as few as 2 lines/frame in a Cartesian trajectory and 3 spokes/frame in a non-Cartesian trajectory. The achieved high temporal resolution (less than 5 ms) for non-rigid motion opens new avenues for motion detection, tracking and correction in dynamic and real-time MRI applications.
- Abstract(参考訳): 磁気共鳴画像(MRI)では、高時間分解能の運動は、画像の取得と再構成、MR誘導放射線療法、ダイナミックコントラスト強調、流れと灌流画像、心血管、腹部、腹膜、胎児、筋骨格画像における運動パターンの機能評価に有用である。
従来、これらの動き推定は、複雑な動きパターンと高ダイナミック解像度のための特に困難なタスクである画像ベースの登録によって導出される。
このような応用における加速走査は、運動推定を損なう画像のアーティファクトをもたらす。
本研究では,獲得した加速されたフーリエ空間,すなわちk空間から直接,非剛性な動き推定を行うために,LAPANet(Local-All Pass Attention Network)と呼ばれる,自己教師付きディープラーニングベースのフレームワークを提案する。
提案手法は局所的全パス登録法(LAP)に従って局所的翻訳変位の累積和として非剛性運動をモデル化する。
LAPANetは,種々のサンプリング軌跡と加速度速度で心運動推定を行った。
その結果,従来と深層学習を併用した登録手法と比較して,カルト系軌道では2行/フレーム,非カルト系軌道では3行/フレームに制限された。
非剛性運動に対する高時間分解能(5ミリ秒未満)は、動的およびリアルタイムMRIアプリケーションにおける動きの検出、追跡、修正のための新しい道を開く。
関連論文リスト
- KFD-NeRF: Rethinking Dynamic NeRF with Kalman Filter [49.85369344101118]
KFD-NeRFは,Kalmanフィルタに基づく効率的かつ高品質な運動再構成フレームワークと統合された,新しい動的ニューラル放射場である。
我々のキーとなる考え方は、動的放射場を、観測と予測という2つの知識源に基づいて時間的に異なる状態が推定される動的システムとしてモデル化することである。
我々のKFD-NeRFは、同等の計算時間と最先端の視線合成性能で、徹底的な訓練を施した類似または優れた性能を示す。
論文 参考訳(メタデータ) (2024-07-18T05:48:24Z) - Attention-aware non-rigid image registration for accelerated MR imaging [10.47044784972188]
我々は,MRIの完全サンプリングと高速化のために,非厳密なペアワイズ登録を行うことのできる,注目に敏感なディープラーニングベースのフレームワークを提案する。
我々は、複数の解像度レベルで、登録された画像ペア間の類似性マップを構築するために、局所的な視覚表現を抽出する。
本モデルでは, 異なるサンプリング軌道にまたがって, 安定かつ一貫した運動場を導出することを示す。
論文 参考訳(メタデータ) (2024-04-26T14:25:07Z) - Motion-adaptive Separable Collaborative Filters for Blind Motion Deblurring [71.60457491155451]
様々な動きによって生じる画像のぼかしを除去することは、難しい問題である。
本研究では,動き適応型分離型協調フィルタと呼ばれる実世界のデブロアリングフィルタモデルを提案する。
本手法は,実世界の動きのぼかし除去に有効な解法を提供し,最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-04-19T19:44:24Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
磁気共鳴イメージング(MRI)におけるオフ共鳴アーティファクトは、画像ボリューム内のスピンの実際の共鳴周波数が空間情報を符号化するのに使用される期待周波数と異なる場合に発生する視覚歪みである。
本稿では,2次元MRI再構成問題を3次元に引き上げ,このオフ共鳴をモデル化するための「スペクトル」次元を導入することで,これらのアーチファクトを解決することを提案する。
論文 参考訳(メタデータ) (2023-11-22T05:44:51Z) - MomentaMorph: Unsupervised Spatial-Temporal Registration with Momenta,
Shooting, and Correction [12.281250177881445]
本稿では,反復パターンと大動きの存在下でのラグランジアン運動推定のための新しい枠組みを提案する。
2次元合成データセットと実3次元tMRIデータセットの結果から,本手法の有効性が示された。
論文 参考訳(メタデータ) (2023-08-05T20:32:30Z) - Unsupervised Landmark Detection Based Spatiotemporal Motion Estimation
for 4D Dynamic Medical Images [16.759486905827433]
2段階からなるDense-Sparse-Dense (DSD) の新たな動き推定フレームワークを提案する。
第1段階では, 対象臓器解剖学的トポロジーを表すために, 粗いランドマークを抽出するために, 生の高密度画像を処理する。
第2段階では、異なる時間点の2つの画像の抽出されたスパースランドマークからスパース運動変位を導出する。
論文 参考訳(メタデータ) (2021-09-30T02:06:02Z) - LAPNet: Non-rigid Registration derived in k-space for Magnetic Resonance
Imaging [28.404584219735074]
胸部スキャン中にこのような動きを補正する動き補正技術が提案されている。
特に興味と課題は、アンダーサンプリングされた動き分解データから信頼できる非剛体運動場の導出にある。
アンダーサンプされたk空間データから高速かつ正確な非剛性登録を行うためのディープラーニングに基づく手法を提案する。
論文 参考訳(メタデータ) (2021-07-19T15:39:23Z) - DeepTag: An Unsupervised Deep Learning Method for Motion Tracking on
Cardiac Tagging Magnetic Resonance Images [10.434681088538866]
本研究では,t-MRI画像のin vivoモーショントラッキングのための深層学習に基づく完全監視手法を提案する。
本手法は代表的な臨床T-MRIデータセットで検証された。
論文 参考訳(メタデータ) (2021-03-04T00:42:11Z) - Motion Pyramid Networks for Accurate and Efficient Cardiac Motion
Estimation [51.72616167073565]
本研究では,心臓の運動推定を高精度かつ効率的に行うための,ディープラーニングに基づく新しいアプローチであるMotion Pyramid Networksを提案する。
我々は、複数の特徴表現から運動場のピラミッドを予測し、融合し、より洗練された運動場を生成する。
そこで我々は,新しい循環型教員教育戦略を用いて,推論をエンドツーエンドにし,トラッキング性能をさらに向上させる。
論文 参考訳(メタデータ) (2020-06-28T21:03:19Z) - A Novel Approach for Correcting Multiple Discrete Rigid In-Plane Motions
Artefacts in MRI Scans [63.28835187934139]
本稿では,2つの入力枝を持つディープニューラルネットワークを用いた動きアーチファクトの除去手法を提案する。
提案法は患者の多動運動によって生成された人工物に応用できる。
論文 参考訳(メタデータ) (2020-06-24T15:25:11Z) - Microvascular Dynamics from 4D Microscopy Using Temporal Segmentation [81.30750944868142]
経時的に脳血流量の変化を追跡でき, ピアル表面に向かって伝播する自発性動脈拡張を同定できる。
この新たなイメージング機能は、機能的磁気共鳴イメージング(fMRI)を基盤とした血行動態応答関数を特徴付けるための有望なステップである。
論文 参考訳(メタデータ) (2020-01-14T22:55:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。