論文の概要: PLAYER*: Enhancing LLM-based Multi-Agent Communication and Interaction in Murder Mystery Games
- arxiv url: http://arxiv.org/abs/2404.17662v4
- Date: Sat, 12 Apr 2025 01:22:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 19:48:45.346291
- Title: PLAYER*: Enhancing LLM-based Multi-Agent Communication and Interaction in Murder Mystery Games
- Title(参考訳): PLAYER*:殺人ミステリーゲームにおけるLLMに基づくマルチエージェントコミュニケーションとインタラクションの強化
- Authors: Qinglin Zhu, Runcong Zhao, Bin Liang, Jinhua Du, Lin Gui, Yulan He,
- Abstract要約: PLAYER*はMurder Mystery Games(MMG)におけるLarge Language Model(LLM)ベースのエージェントのための新しいフレームワークである
MMGには、未定義の状態空間、中間報酬の欠如、継続的な言語領域における戦略的相互作用の必要性など、ユニークな課題がある。
PLAYER*は、エージェント状態のセンサベース表現、情報ゲインによってガイドされる質問ターゲティングメカニズム、および疑似リストの洗練と意思決定効率の向上を通じて、これらの複雑さに対処する。
- 参考スコア(独自算出の注目度): 21.639516389561837
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present PLAYER*, a novel framework for Large Language Model (LLM)-based agents in Murder Mystery Games (MMGs). MMGs pose unique challenges, including undefined state spaces, absent intermediate rewards, and the need for strategic interaction in a continuous language domain. PLAYER* addresses these complexities through a sensor-based representation of agent states, a question-targeting mechanism guided by information gain, and a pruning strategy to refine suspect lists and enhance decision-making efficiency. To enable systematic evaluation, we propose WellPlay, a dataset comprising 1,482 inferential questions across 12 games, categorized into objectives, reasoning, and relationships. Experiments demonstrate PLAYER*'s capacity to achieve superior performance in reasoning accuracy and efficiency compared to existing approaches, while also significantly improving the quality of agent-human interactions in MMGs. This study advances the development of reasoning agents for complex social and interactive scenarios.
- Abstract(参考訳): 本稿では,Murder Mystery Games(MMG)において,LLM(Large Language Model)ベースのエージェントのための新しいフレームワークPLAYER*を提案する。
MMGには、未定義の状態空間、中間報酬の欠如、継続的な言語領域における戦略的相互作用の必要性など、ユニークな課題がある。
PLAYER*は、エージェント状態のセンサベース表現、情報ゲインによってガイドされる質問ターゲティングメカニズム、および疑似リストの洗練と意思決定効率の向上を通じて、これらの複雑さに対処する。
システム評価を実現するために,12ゲームにまたがる1,482の推論質問からなるデータセットWellPlayを提案する。
実験では,既存のアプローチと比較して精度と効率を推算する上で,PLAYER*の優れた性能を実現する能力を示すとともに,MMGにおけるエージェントとヒューマンの相互作用の質を著しく向上させることを示した。
本研究では,複雑な社会的・インタラクティブなシナリオのための推論エージェントの開発を進める。
関連論文リスト
- FAIRGAME: a Framework for AI Agents Bias Recognition using Game Theory [51.96049148869987]
ゲーム理論を用いたAIエージェントバイアス認識フレームワークFAIRGAMEを提案する。
我々は,AIエージェント間の人気ゲームにおけるバイアスのある結果を明らかにするために,その実装と利用について述べる。
全体として、FAIRGAMEはユーザーが望むゲームやシナリオを確実に簡単にシミュレートできる。
論文 参考訳(メタデータ) (2025-04-19T15:29:04Z) - Multi-Mission Tool Bench: Assessing the Robustness of LLM based Agents through Related and Dynamic Missions [12.218102495632937]
大規模言語モデル(LLM)は、高度な理解と計画能力のため、ツール呼び出しのエージェントとして強力な可能性を示している。
ベンチマークでは、各テストケースは複数の相互関連ミッションから構成される。
また,エージェント決定の精度と効率を動的決定木を用いて評価する手法を提案する。
論文 参考訳(メタデータ) (2025-04-03T14:21:33Z) - AgentSense: Benchmarking Social Intelligence of Language Agents through Interactive Scenarios [38.878966229688054]
本稿では,対話型シナリオを通して言語エージェントのソーシャルインテリジェンスをベンチマークするAgensSenseを紹介する。
ドラマティック理論に基づいて、エージェントセンスは、広範なスクリプトから構築された1,225の多様な社会的シナリオを作成するためにボトムアップアプローチを採用している。
我々はERG理論を用いて目標を分析し、包括的な実験を行う。
以上の結果から,LPMは複雑な社会シナリオ,特に高レベルの成長ニーズにおいて,目標達成に苦慮していることが明らかとなった。
論文 参考訳(メタデータ) (2024-10-25T07:04:16Z) - SPA-Bench: A Comprehensive Benchmark for SmartPhone Agent Evaluation [89.24729958546168]
We present SPA-Bench, a comprehensive SmartPhone Agent Benchmark designed to evaluate (M)LLM-based agent。
SPA-Benchは3つの重要なコントリビューションを提供している。 英語と中国語の両方で、システムとサードパーティアプリをカバーする多様なタスクセットで、日々のルーチンで一般的に使用される機能に焦点を当てている。
複数の次元にまたがってエージェントのパフォーマンスを自動的に評価する新しい評価パイプラインは、タスク完了とリソース消費に関連する7つの指標を含んでいる。
論文 参考訳(メタデータ) (2024-10-19T17:28:48Z) - Optimizing Collaboration of LLM based Agents for Finite Element Analysis [1.5039745292757671]
本稿では,Large Language Models (LLM) 内の複数のエージェント間の相互作用について,プログラミングおよびコーディングタスクの文脈で検討する。
我々はAutoGenフレームワークを利用してエージェント間の通信を容易にし、各セットアップの40のランダムランからの成功率に基づいて異なる構成を評価する。
論文 参考訳(メタデータ) (2024-08-23T23:11:08Z) - Efficient Adaptation in Mixed-Motive Environments via Hierarchical Opponent Modeling and Planning [51.52387511006586]
本稿では,HOP(Hierarchical Opponent Modeling and Planning)を提案する。
HOPは階層的に2つのモジュールから構成される: 相手の目標を推論し、対応する目標条件のポリシーを学ぶ、反対モデリングモジュール。
HOPは、さまざまな未確認エージェントと相互作用する際、優れた少数ショット適応能力を示し、セルフプレイのシナリオで優れている。
論文 参考訳(メタデータ) (2024-06-12T08:48:06Z) - AntEval: Evaluation of Social Interaction Competencies in LLM-Driven
Agents [65.16893197330589]
大規模言語モデル(LLM)は、幅広いシナリオで人間の振る舞いを再現する能力を示した。
しかし、複雑なマルチ文字のソーシャルインタラクションを扱う能力については、まだ完全には研究されていない。
本稿では,新しいインタラクションフレームワークと評価手法を含むマルチエージェントインタラクション評価フレームワーク(AntEval)を紹介する。
論文 参考訳(メタデータ) (2024-01-12T11:18:00Z) - Deciphering Digital Detectives: Understanding LLM Behaviors and
Capabilities in Multi-Agent Mystery Games [26.07074182316433]
本稿では,Jubenshaに特化している最初のデータセットについて紹介する。
我々の研究は、LSMを使ったユニークなマルチエージェントインタラクションフレームワークも提供し、AIエージェントがこのゲームに自律的に関与できるようにする。
これらのAIエージェントのゲーム性能を評価するために,ケース情報と推論スキルの熟達度を測定する新しい手法を開発した。
論文 参考訳(メタデータ) (2023-12-01T17:33:57Z) - MAgIC: Investigation of Large Language Model Powered Multi-Agent in
Cognition, Adaptability, Rationality and Collaboration [102.41118020705876]
大規模言語モデル(LLM)は自然言語処理の分野で大きな進歩を遂げている。
アプリケーションがマルチエージェント環境に拡張されるにつれ、包括的な評価フレームワークの必要性が高まっている。
この研究は、マルチエージェント設定内でLLMを評価するために特別に設計された新しいベンチマークフレームワークを導入している。
論文 参考訳(メタデータ) (2023-11-14T21:46:27Z) - On Generative Agents in Recommendation [58.42840923200071]
Agent4Recは、Large Language Modelsに基づいたレコメンデーションのユーザーシミュレータである。
各エージェントは、ページ単位でパーソナライズされた推奨モデルと対話する。
論文 参考訳(メタデータ) (2023-10-16T06:41:16Z) - Cooperation, Competition, and Maliciousness: LLM-Stakeholders Interactive Negotiation [52.930183136111864]
我々は,大言語モデル(LLM)を評価するためにスコーラブルネゴシエーション(scorable negotiations)を提案する。
合意に達するには、エージェントは強力な算術、推論、探索、計画能力を持つ必要がある。
我々は、新しいゲームを作成し、進化するベンチマークを持つことの難しさを増大させる手順を提供する。
論文 参考訳(メタデータ) (2023-09-29T13:33:06Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgentは、大規模な言語モデルを利用してプロアクティブエージェントを生成する新しいフレームワークである。
ProAgentは現状を分析し、チームメイトの意図を観察から推測することができる。
ProAgentは高度なモジュール化と解釈可能性を示し、様々な調整シナリオに容易に統合できる。
論文 参考訳(メタデータ) (2023-08-22T10:36:56Z) - Tachikuma: Understading Complex Interactions with Multi-Character and
Novel Objects by Large Language Models [67.20964015591262]
我々は,複数文字と新しいオブジェクトベースインタラクション推定タスクとサポートデータセットからなる,立久間というベンチマークを導入する。
このデータセットは、ゲームプレイ中のリアルタイム通信からログデータをキャプチャし、多様な、接地された複雑なインタラクションを提供して、さらなる探索を行う。
本稿では,対話理解の強化に有効であることを示すため,簡単なプロンプトベースラインを提案し,その性能評価を行う。
論文 参考訳(メタデータ) (2023-07-24T07:40:59Z) - MUG: Interactive Multimodal Grounding on User Interfaces [12.035123646959669]
本稿では,ユーザとエージェントがインタフェース画面上で協調作業を行うマルチモーダルグラウンドのための対話型タスクMUGを提案する。
ユーザがコマンドを与え、エージェントがコマンドに応答する。MUGはエージェントの応答を見る際に、エージェントがそのアクションを洗練または修正するための追加コマンドを与えるように、複数のラウンドのインタラクションを可能にする。
論文 参考訳(メタデータ) (2022-09-29T21:08:18Z) - Toward Policy Explanations for Multi-Agent Reinforcement Learning [18.33682005623418]
MARLのための2種類のポリシー記述を生成するための新しい手法を提案する。
3つのMARL領域の実験結果から,提案手法のスケーラビリティが実証された。
ユーザスタディでは、生成された説明がユーザパフォーマンスを著しく改善し、ユーザ満足度などの指標に対する主観的評価が向上することを示した。
論文 参考訳(メタデータ) (2022-04-26T20:07:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。