論文の概要: Energy Storage Arbitrage in Two-settlement Markets: A Transformer-Based Approach
- arxiv url: http://arxiv.org/abs/2404.17683v1
- Date: Fri, 26 Apr 2024 20:25:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 19:50:27.878779
- Title: Energy Storage Arbitrage in Two-settlement Markets: A Transformer-Based Approach
- Title(参考訳): 変圧器を基盤とした2つの市場におけるエネルギー貯蔵のアービタージュ
- Authors: Saud Alghumayjan, Jiajun Han, Ningkun Zheng, Ming Yi, Bolun Xu,
- Abstract要約: 本稿では,日頭およびリアルタイム市場におけるエネルギー貯蔵の入札モデルについて述べる。
統合された2段階入札においては、リアルタイム入札は日頭決済とは独立であり、日頭入札は予測されたリアルタイム価格に基づいて行われるべきであることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper presents an integrated model for bidding energy storage in day-ahead and real-time markets to maximize profits. We show that in integrated two-stage bidding, the real-time bids are independent of day-ahead settlements, while the day-ahead bids should be based on predicted real-time prices. We utilize a transformer-based model for real-time price prediction, which captures complex dynamical patterns of real-time prices, and use the result for day-ahead bidding design. For real-time bidding, we utilize a long short-term memory-dynamic programming hybrid real-time bidding model. We train and test our model with historical data from New York State, and our results showed that the integrated system achieved promising results of almost a 20\% increase in profit compared to only bidding in real-time markets, and at the same time reducing the risk in terms of the number of days with negative profits.
- Abstract(参考訳): 本稿では、利益を最大化するために、日頭とリアルタイム市場におけるエネルギー貯蔵の入札モデルを提案する。
統合された2段階入札においては、リアルタイム入札は日頭決済とは独立であり、日頭入札は予測されたリアルタイム価格に基づいて行われるべきであることを示す。
本研究では,リアルタイム価格予測にトランスフォーマーモデルを用い,リアルタイム価格の複雑な動的パターンを抽出し,その結果を日頭入札設計に利用する。
リアルタイム入札には、長期のメモリ・ダイナミックプログラミングハイブリッドリアルタイム入札モデルを用いる。
我々は,我々のモデルをニューヨーク州の歴史的データでトレーニングし,その結果,リアルタイム市場のみの入札よりも約20倍近い利益率の有望な結果を達成し,同時に負の利益を伴う日数でリスクを低減した。
関連論文リスト
- Stock Market Price Prediction: A Hybrid LSTM and Sequential
Self-Attention based Approach [3.8154633976469086]
LSTM-SSAM(Sequential Self-Attention Mechanism)を用いたLong Short-Term Memory(LSTM)というモデルを提案する。
SBIN,BANK,BANKBARODAの3つのストックデータセットについて広範な実験を行った。
実験により,既存のモデルと比較して,提案モデルの有効性と妥当性が示された。
論文 参考訳(メタデータ) (2023-08-07T14:21:05Z) - Multivariate Probabilistic Forecasting of Intraday Electricity Prices
using Normalizing Flows [62.997667081978825]
ドイツでは、日内電気価格は通常、EPEXスポット市場の1日当たりの価格に異なる時間帯で変動する。
本研究は,日頭契約の日内価格差をモデル化する確率論的モデリング手法を提案する。
論文 参考訳(メタデータ) (2022-05-27T08:38:20Z) - Data-Driven Online Interactive Bidding Strategy for Demand Response [0.30586855806896046]
需要応答(DR)は、ピークシェービングのサービスを提供し、短い応答期間と低コストで再生可能エネルギー利用の効率を高める。
自動DR、インセンティブDR、緊急DR、需要入札など、さまざまなカテゴリーのDRが確立されている。
本稿では,スマートメーターデータと関数を併用した入札・購買戦略について検討する。
その結果, 多様な状況に直面した場合, 提案モデルでは, 入札ルールをオフラインで学習し, 適切な入札を行うことにより, 最適利益を得ることができることがわかった。
論文 参考訳(メタデータ) (2022-02-09T02:44:20Z) - Multi-Asset Spot and Option Market Simulation [52.77024349608834]
正規化フローに基づく1つの基盤となる1つのマーケットシミュレータを現実的に構築する。
本研究では, 正規化流れの条件付き可逆性を活用し, 独立シミュレータの連立分布をキャリブレーションするスケーラブルな手法を提案する。
論文 参考訳(メタデータ) (2021-12-13T17:34:28Z) - Arbitrary Distribution Modeling with Censorship in Real-Time Bidding
Advertising [2.562910030418378]
インベントリプライシングの目的は、オンライン広告の機会に適切な価格を入札することであり、これはデマンド・サイド・プラットフォーム(DSP)がリアルタイム入札(RTB)で競売に勝つために不可欠である。
以前の作品の多くは、勝利価格の分布形式を強く仮定し、その正確さを減らし、一般化する能力を弱めた。
我々は,新たな損失関数であるNLL(Neighborhood Likelihood Loss)を提案し,検閲下での勝利価格分布を予測するためのフレームワークであるArbitrary Distribution Modeling(ADM)と協調する。
論文 参考訳(メタデータ) (2021-10-26T11:40:00Z) - Stock Price Prediction Under Anomalous Circumstances [81.37657557441649]
本稿では,異常な状況下での株価の変動パターンを捉えることを目的とする。
ARIMAとLSTMのモデルは、シングルストックレベル、業界レベル、一般市場レベルでトレーニングします。
2016年から2020年にかけての100社の株価に基づいて、平均予測精度は98%に達した。
論文 参考訳(メタデータ) (2021-09-14T18:50:38Z) - Learning the Gap in the Day-Ahead and Real-Time Locational Marginal
Prices in the Electricity Market [0.0]
機械学習アルゴリズムとディープニューラルネットワークは、日頭電気市場とリアルタイム電気市場の間の価格差の値を予測するために使用される。
提案手法を評価し,ニューラルネットワークはギャップの正確な値を予測できる有望な結果を示した。
論文 参考訳(メタデータ) (2020-12-23T16:49:24Z) - Hybrid Modelling Approaches for Forecasting Energy Spot Prices in EPEC
market [62.997667081978825]
EPEC市場におけるエネルギースポット価格予測のためのハイブリッドモデリング手法について検討する。
データは2013-2014年の電力価格、2015年のテストデータで提供された。
論文 参考訳(メタデータ) (2020-10-14T12:45:53Z) - Stock2Vec: A Hybrid Deep Learning Framework for Stock Market Prediction
with Representation Learning and Temporal Convolutional Network [71.25144476293507]
我々は、株式市場の日々の価格を予測するためのグローバルなハイブリッドディープラーニングフレームワークを開発することを提案した。
表現学習によって、私たちはStock2Vecという埋め込みを導きました。
我々のハイブリッドフレームワークは、両方の利点を統合し、いくつかの人気のあるベンチマークモデルよりも、株価予測タスクにおいてより良いパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-09-29T22:54:30Z) - Ensemble Forecasting for Intraday Electricity Prices: Simulating
Trajectories [0.0]
近年の研究では、時間単位のドイツの日内連続市場は弱い状態にあることが示されている。
時間内電力価格の確率予測は、トレーディングウィンドウ毎に軌跡をシミュレートして行う。
この調査は、過去3時間でドイツの日内連続市場における価格分布を予測することを目的としているが、このアプローチは、特にヨーロッパでは、他の連続市場への適用を可能にする。
論文 参考訳(メタデータ) (2020-05-04T10:21:20Z) - A Deep Reinforcement Learning Framework for Continuous Intraday Market
Bidding [69.37299910149981]
再生可能エネルギー源統合の成功の鍵となる要素は、エネルギー貯蔵の利用である。
欧州の継続的な日内市場におけるエネルギー貯蔵の戦略的関与をモデル化するための新しい枠組みを提案する。
本アルゴリズムの分散バージョンは, サンプル効率のため, この問題を解決するために選択される。
その結果, エージェントは, ベンチマーク戦略よりも平均的収益率の高い政策に収束することが示唆された。
論文 参考訳(メタデータ) (2020-04-13T13:50:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。