Embedded FPGA Developments in 130nm and 28nm CMOS for Machine Learning in Particle Detector Readout
- URL: http://arxiv.org/abs/2404.17701v5
- Date: Wed, 28 Aug 2024 17:47:35 GMT
- Title: Embedded FPGA Developments in 130nm and 28nm CMOS for Machine Learning in Particle Detector Readout
- Authors: Julia Gonski, Aseem Gupta, Haoyi Jia, Hyunjoon Kim, Lorenzo Rota, Larry Ruckman, Angelo Dragone, Ryan Herbst,
- Abstract summary: Field programmable gate array (eFPGA) technology allows the implementation of reconfigurable logic within the design of an application-specific integrated circuit (ASIC)
An open-source framework called "FABulous" was used to design eFPGAs using 130 nm and 28 nm CMOS technology nodes.
A machine learning-based classifier, designed for reduction of sensor data at the source, was synthesized and configured onto the eFPGA.
- Score: 0.7367855181841242
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Embedded field programmable gate array (eFPGA) technology allows the implementation of reconfigurable logic within the design of an application-specific integrated circuit (ASIC). This approach offers the low power and efficiency of an ASIC along with the ease of FPGA configuration, particularly beneficial for the use case of machine learning in the data pipeline of next-generation collider experiments. An open-source framework called "FABulous" was used to design eFPGAs using 130 nm and 28 nm CMOS technology nodes, which were subsequently fabricated and verified through testing. The capability of an eFPGA to act as a front-end readout chip was assessed using simulation of high energy particles passing through a silicon pixel sensor. A machine learning-based classifier, designed for reduction of sensor data at the source, was synthesized and configured onto the eFPGA. A successful proof-of-concept was demonstrated through reproduction of the expected algorithm result on the eFPGA with perfect accuracy. Further development of the eFPGA technology and its application to collider detector readout is discussed.
Related papers
- Investigating Resource-efficient Neutron/Gamma Classification ML Models Targeting eFPGAs [0.0]
Open-source embedded FPGA (eFPGA) frameworks provide an alternate, more flexible pathway for implementing machine learning models in hardware.
We explore the parameter space for eFPGA implementations of fully-connected neural network (fcNN) and boosted decision tree (BDT) models.
The results of the study will be used to aid the specification of an eFPGA fabric, which will be integrated as part of a test chip.
arXiv Detail & Related papers (2024-04-19T20:03:30Z) - Understanding the Potential of FPGA-Based Spatial Acceleration for Large Language Model Inference [11.614722231006695]
Large language models (LLMs) boasting billions of parameters have generated a significant demand for efficient deployment in inference workloads.
This paper investigates the feasibility and potential of model-specific spatial acceleration for LLM inference on FPGAs.
arXiv Detail & Related papers (2023-12-23T04:27:06Z) - CktGNN: Circuit Graph Neural Network for Electronic Design Automation [67.29634073660239]
This paper presents a Circuit Graph Neural Network (CktGNN) that simultaneously automates the circuit topology generation and device sizing.
We introduce Open Circuit Benchmark (OCB), an open-sourced dataset that contains $10$K distinct operational amplifiers.
Our work paves the way toward a learning-based open-sourced design automation for analog circuits.
arXiv Detail & Related papers (2023-08-31T02:20:25Z) - Reconfigurable Distributed FPGA Cluster Design for Deep Learning
Accelerators [59.11160990637615]
We propose a distributed system based on lowpower embedded FPGAs designed for edge computing applications.
The proposed system can simultaneously execute diverse Neural Network (NN) models, arrange the graph in a pipeline structure, and manually allocate greater resources to the most computationally intensive layers of the NN graph.
arXiv Detail & Related papers (2023-05-24T16:08:55Z) - End-to-end codesign of Hessian-aware quantized neural networks for FPGAs
and ASICs [49.358119307844035]
We develop an end-to-end workflow for the training and implementation of co-designed neural networks (NNs)
This makes efficient NN implementations in hardware accessible to nonexperts, in a single open-sourced workflow.
We demonstrate the workflow in a particle physics application involving trigger decisions that must operate at the 40 MHz collision rate of the Large Hadron Collider (LHC)
We implement an optimized mixed-precision NN for high-momentum particle jets in simulated LHC proton-proton collisions.
arXiv Detail & Related papers (2023-04-13T18:00:01Z) - HARFLOW3D: A Latency-Oriented 3D-CNN Accelerator Toolflow for HAR on
FPGA Devices [71.45672882756001]
This study introduces a novel streaming architecture based toolflow for mapping 3D Convolutional Neural Networks onto FPGAs.
The HARFLOW3D toolflow takes as input a 3D CNN in ONNX format and a description of the FPGA characteristics.
The ability of the toolflow to support a broad range of models and devices is shown through a number of experiments on various 3D CNN and FPGA system pairs.
arXiv Detail & Related papers (2023-03-30T08:25:27Z) - Resource-constrained FPGA Design for Satellite Component Feature
Extraction [0.0]
This work proposes use of neural network-based object detection algorithm that can be deployed on a resource-constrained FPGA.
Hardware-in-the-loop experiments were performed on the ORION Maneuver Kinematics Simulator at Florida Tech.
Results show the FPGA implementation increases the throughput and decreases latency while maintaining comparable accuracy.
arXiv Detail & Related papers (2023-01-22T04:49:04Z) - LL-GNN: Low Latency Graph Neural Networks on FPGAs for High Energy
Physics [45.666822327616046]
This work presents a novel reconfigurable architecture for Low Graph Neural Network (LL-GNN) designs for particle detectors.
The LL-GNN design advances the next generation of trigger systems by enabling sophisticated algorithms to process experimental data efficiently.
arXiv Detail & Related papers (2022-09-28T12:55:35Z) - Open-source FPGA-ML codesign for the MLPerf Tiny Benchmark [11.575901540758574]
We present our development experience for the Tiny Inference Benchmark on field-programmable gate array (FPGA) platforms.
We use the open-source hls4ml and FINN perJ, which aim to democratize AI- hardware codesign of optimized neural networks on FPGAs.
The solutions are deployed on system-on-chip (Pynq-Z2) and pure FPGA (Arty A7-100T) platforms.
arXiv Detail & Related papers (2022-06-23T15:57:17Z) - Accelerated Charged Particle Tracking with Graph Neural Networks on
FPGAs [0.0]
We develop and study FPGA implementations of algorithms for charged particle tracking based on graph neural networks.
We find a considerable speedup over CPU-based execution is possible, potentially enabling such algorithms to be used effectively in future computing.
arXiv Detail & Related papers (2020-11-30T18:17:43Z) - Extending XACC for Quantum Optimal Control [70.19683407682642]
Quantum computing vendors are beginning to open up application programming for direct pulse-level quantum control.
We present an extension to the XACC system-level quantum-classical software framework.
This extension enables the translation of digital quantum circuit representations to equivalent pulse sequences.
arXiv Detail & Related papers (2020-06-04T13:13:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.